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Abstract— In recent years, significant progress has been 

made in research on various problems of autonomous 

transport. According to most forecasts, autonomous vehicles 
will appear on the roads in the coming years. However, strict 

requirements for the artificial intelligence of autonomous 

vehicles have not yet been formulated. We do not yet have a 

clear understanding of the intelligence for autonomous 

vehicles. Nevertheless, the problem of developing an analogue 
of the Turing test for autonomous vehicles has attracted 

increasing attention in recent years. There are a number of 

different points of view on the analogue of the Turing test for 

autonomous vehicles. We show that passing the Turing test 

must be performed under conditions that are significantly 
different from those commonly used. We argue that passing 

such a test can be presumably much harder than the original. 

We consider a number of additional tests that can be used as 

some parts of the Turing test. In particular, we can mention 

such tests as practical test of driving skills, health test, test of 
prediction skills, security test, body test, coexistence test, aging 

test, trust test, overall performance test, no-harm test. In this 

paper, we pay special attention to the no-harm test. We 

consider an approach that is based on evolutionary machine 

learning. For the first study of the no-harm test, we have 
considered a relatively simple model of the natural 

environment and have proposed an algorithm for artificial 

evolution for the environment. The results of our experimental 

studies show that insufficiently justified implementation of 

autonomous vehicles can lead to unpredictable consequences. 

 
Keywords— Autonomous vehicles, evolutionary machine 

learning, no-harm test, Turing test. 

 

I. INTRODUCTION 

It has been predicted that manufacturers will introduce 

automated vehicles into the market by 2025 (see e.g. [1]). It 

is assumed that by 2045 automated vehicles will have a t 

least 80% share of the car market [2]. However, many 

fundamentally important questions remain unresolved. In 

particular, there are significant challenges in establishing 

uniform regulatory tests for the certification of autonomous 

vehicles [3]. Such certification should make it possible to 

evaluate the performance of autonomous vehicles with 

regard to road safety. Most researchers believe that such 

certification should be based on some analogue of the 

Turing test. However, views on the level of requirements for 

an analogue of the Turing test differ significantly. In some 

cases, it is assumed that it is enough to consider some 

 
Manuscript received July 22, 2025.  
A. A. Gorbenko is with the Ural Federal University, Ekaterinburg, 

Russian Federation (e-mail: gorbenko.aa@gmail.com).  
V. Yu. Popov is with the Ural Federal University, Ekaterinburg, Russian 

Federation (e-mail: popovvvv@gmail.com). 

certification framework based on the Turing test (see e.g. 

[4]). A number of studies argue for the need to develop 

additional tests and procedures. In particular, the 

replacement test has been proposed [5]. On the other hand, 

some researchers believe that the analogue of the Turing test  

for autonomous vehicles should be much easier than the 

original Turing test [6]. In particular, there are a number of 

reports that autonomous vehicles have passed the Turing test 

(see e.g. [7]). Moreover, some researchers believe that the 

Turing test can be passed in some relatively simple 

simulation settings [8-10]. 

In this paper, we do not consider the issue of the necessity 

or sufficiency of the Turing test. We show that passing the 

Turing test is usually considered under incorrect conditions. 

Passing the Turing test under the correct conditions will 

require significantly more effort from an artificial 

intelligence system. Moreover, the direct analogue of the 

Turing test for autonomous vehicles is significantly more 

difficult than the original Turing test.  

 

II. TURING TEST 

Currently, there is no exact definition of intelligence for 

autonomous vehicles [6]. Accordingly, there is no clear 

understanding of the concept of an autonomous vehicle. 

There are a number of unresolved social dilemmas that are 

associated with the development of autonomous vehicle 

technologies. Even the question of the need for autonomou s 

vehicles does not yet find a clear answer. In particular, it is 

mentioned in [11] that “the balance between the short-term 

benefits and long-term impacts of vehicle automation 

remains an open question”. At the same time, the need for 

autonomous vehicles is gaining increasing support. In 

particular, several countries allowed autonomous vehicles to  

be tested on ordinary roads.  

The need for a global dialogue to establish a standard for 

artificial intelligence on our roads was expressed during the 

AI for Good Global Summit 2019. It is assumed that this 

standard will be some generally accepted analogue of the 

Turing test for autonomous vehicles. Perhaps this is just the 

future that rushes into the present too quickly. It is well 

known that when we make a wish, we should be careful. 

Our desire can be fulfilled. However, when this desire is 

fulfilled, we can understand that we did not get exactly what  

we wanted. However, we can better see the possible 

prospects of autonomous vehicles through the prism of the 

Turing test.  

It is usually assumed that autonomous vehicles should be 

safer and more economical. Such vehicles can solve a 

number of problems. Among other things, we can mention 
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accident, pollution, and traffic congestion. However, the 

usefulness of autonomous vehicles to solve some problems 

naturally implies that such vehicles are intelligent enough. 

Therefore, in order to prove the usefulness of autonomous 

vehicles, we need a proper vehicle intelligence test. 

There are a number of different approaches that can make 

autonomous vehicles a reality. Some of these approaches 

imply the need for various adaptations of environments. In 

particular, encoded asphalt materials for the adaptation of 

pavements have been proposed [12]. Also, unmanned 

environments should be mentioned [13]. In general, we can 

consider various types of partially depopulated 

environments. For instance, we can provide fully 

autonomous environments [14]. Also, we can consider 

purposefully prestructured environments that are more or 

less not affected by individual and collective human 

activities. It is clear that attempts to adapt environments ca n  

be negatively perceived by society. However, such a 

reaction of society should not always be expected. There are 

improvements in the environment that can be considered as 

elements of additional comfort for human drivers and a t  the 

same time significantly simplify the provision of sustainable 

navigation for autonomous vehicles. In particular, the 

creation of global Wi-Fi coverage should be mentioned [15]. 

Many of the possible modifications to the environment 

should be considered as improvements that are aimed 

primarily at increasing road user safety. In particular, we can 

mention a more careful attitude to road surface markings 

and road fences, various improvements aimed at improving 

traffic safety in difficult weather conditions such as, for 

example, heated roads in cold regions, clarification of traffic 

rules. It is important to take into account that in many ca ses 

even relatively minor improvements can significantly reduce 

the demands on the level of intelligence of autonomous 

vehicles. For instance, moving into the on-coming lane to 

avoid an obstacle may require autonomous vehicles to use 

fairly specific human-level intelligence skills such as the 

ability to negotiate [16]. Not every human is able to 

demonstrate negotiability. Accordingly, the absence of such 

an ability should not affect the passage of the Turing test. At  

the same time, a minor refinement of traffic rules would 

make it possible to cope with such a maneuver based on a 

simple deterministic algorithm. Currently, the direction of 

research related to the modification of environments is 

underestimated. Despite the significant potential for 

solutions that can essentially reduce the requirements for 

autonomous vehicles and increase the sustainability of 

transport systems, there is only few number of investigations 

in this direction. Researchers focus on creating autonomous 

vehicles for ordinary roads. Frequently, it is assumed that 

autonomous vehicles should collaborate and coexist with 

humans safely and capably on the roads.  

In recent years, the Turing test has been extensively 

studied in the context of autonomous vehicles [17-19]. The 

idea of creating a Turing test for autonomous vehicles for 

ordinary roads has been actively discussed in recent years. It  

should be noted that the Turing test is only a scientific 

experiment. The purpose of this test is merely to ascertain 

the agent’s ability to think. If an agent passes the Turing 

test, we will get a scientific result and nothing more. Passing 

the Turing test is not a justification for the practical use of 

this agent. Also, passing the Turing test is not a recognition 

of the ability of this agent to function independently. It 

should be noted that the possible emergence of the Turing 

test for autonomous vehicles is a fundamentally important 

point for the development of technology of autonomous 

vehicles. Currently, the technology of autonomous vehicles 

is causing considerable doubt among researchers. However, 

most of the arguments voiced are related to the fact that 

autonomous vehicles may be unable to solve some 

problems. At the same time, the same problems are 

fundamentally difficult for humans. For instance, “they will 

sometimes have to choose between two evils, such as 

running over pedestrians or sacrificing themselves and their 

passenger to save the pedestrians” [20]. Emergence of the 

Turing test for autonomous vehicles will allow the 

technology to become a reality not because the vehicles can 

solve problems well, but because the vehicles can solve 

these problems like humans.  

There are even some preliminary versions of such a test 

[21]. For instance, we can mention the ADA AV Turing 

Test. The ADA AV Turing Test is based on three principles 

to meet the burden of proof. 

1. Prove artificial intelligence never engages in 

careless, dangerous or reckless driving behaviour. 

2. Prove artificial intelligence remains aware, willing 

and able to avoid collisions at all times. 

3. Prove artificial intelligence meets, or exceeds, the 

performance of a “competent & careful” human 

driver.  

It is commonly accepted that we cannot just use the 

Turing test. It is quite natural. To obtain a driver’s license, 

humans must not only demonstrate some knowledge but 

also driving skills. Moreover, humans must comply for 

health reasons. It seems that testing the health and driving 

skills is not implied by the spirit of the Turing test. Thus, the 

Turing test for autonomous vehicles should be a bit harder. 

However, usually it is assumed that passing such a test 

should be presumably much simpler than the original [16]. 

In particular, in some cases, it is assumed that the 

autonomous vehicle is enough to demonstrate only some 

limited form of intelligence [6]. It is possible that this is 

indeed so. However, in this case, it is preferable to obtain an 

explicit formulation of such limitations. The original Turing 

test has been proposed to answer the question “Can 

machines think?” Respectively, if we pose the question 

“Can machines drive?”, what should be understood by the 

word “drive”? Also, it is necessary to find an explanation of 

how the autonomous vehicle with only some limited form of  

intelligence will solve the following problems. 

If the vehicles will demonstrate the average behavior of 

human drivers, it is necessary to understand benefits of 

using such vehicles. Frequently, it is assumed that 

autonomous vehicles should at least meets the performance 

of careful human drivers. In general, an increase in the 

number of careful drivers should be welcome. However, in 

the case of autonomous vehicles, such an increase will 

happen without reinforcement by the corresponding changes 

in society. Such vehicles can upset the balance on the roads. 

A number of researchers have studied the implications of 
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this rebalancing for transport performance (see e.g. [1]). In 

particular, it has been shown that in some cases the 

introduction of autonomous vehicles can lead to a drop in 

productivity (see e.g. [22]). Therefore, an overall 

performance test is necessary. However, the issue of safety 

is significantly more important. An increase in the number 

of careful drivers can cause negative reactions of some other 

human drivers. In particular, this can lead to an increase in 

the number of provocations and, as a result, emergency 

situations.  

Among other important skills, the vehicle must prove its 

ability to consider moral and ethical aspects when assessing 

the possibility of violating traffic rules such as speeding 

[23]. Studies of the interaction of a pedestrian and a robot 

have shown that participants changes their trajectory in the 

close proximity of the robot in 29 % of trials [24]. A similar 

situation is naturally expected for the vehicles. So, the 

vehicle should predict the intentions of other agents to 

achieve sufficient performance. Of course, the autonomous 

vehicle must prove a capability to avoid dangerous 

situations [20]. It seems obvious that the presence of such a 

capability implies a capability to predict the possibility of a 

dangerous situation. It is clear that we need some 

justification of the possibility of solving these problems by 

some limited form of intelligence. 

Currently, there is no complete clarity as to what exactly 

can guarantee that the vehicles will not leave roads. In 2015, 

Twitter software robots have a lready demonstrated that they  

can be a threat, even though this behavior has not been 

programmed [25]. In addition, the actions of intruders can 

cause vehicles to leave roads [26]. Attempts to limit oneself 

to some form of road tests leave unanswered the question o f  

the off-road behavior of the vehicles. The original Turing 

test has been proposed to answer the question “Can 

machines think?” Therefore, the purpose of the Turing test 

is to find out our opinion about an agent. If we want to allow 

the agent to coexist with humans, the agent must pass an 

additional test. Such a test should demonstrate the agent’s 

opinion of humans, the agent’s opinion on humans, and the 

agent’s opinion about humans. Moreover, the existence of 

an agent in time makes it necessary to pass another test. This 

test should determine the agent’s susceptibility to age-

related changes. When passing the original Turing test, we 

implicitly assume that the artificial intelligence system is 

honest. However, the degree of success in passing the test 

does not depend on whether the system is fair or not. When 

we license an autonomous vehicle, we should trust that 

autonomous vehicle. Many artificial intelligence systems 

use Internet resources for training. For example, GPT-3. 

Using Internet resources for learning can lead to the creation 

of a deceptive artificial intelligence system. In particular, the 

creation of a deceptive artificial intelligence system may be 

due to the fact that the system has learned to use deception 

to its advantage. In other cases, the creation of a deceptive 

artificial intelligence system may be the result of the 

accumulation of faulty knowledge. Autonomous vehicles 

must pass a test that assesses the possible level of trust in the 

system. 

Finally, attention should be paid to the existence of a 

natural approach to the problem of creating autonomous 

vehicles based on the use of a humanoid robot. If a  

humanoid robot can pass a well-defined original Turing test, 

then the robot can obtain a license to drive in the usual way 

and drive an ordinary car. In this case, the need to develop 

not only the Turing test for autonomous vehicles but also the 

autonomous vehicles themselves disappears. Usually, for 

general reasons, the task of creating such a humanoid is 

considered to be significantly more complicated. However, a  

comprehensive study of this issue has not been conducted. 

Even a comparatively superficial comparison of the vehicle 

and a humanoid driver allows us to formulate some 

important issues that should be verified by an analogue of 

the Turing test. The vehicle’s lack of body in itself raises a 

number of difficult issues. Some of these issues can be 

found to be consistent with the spirit of the Turing test. For 

instance, the influence of the absence of a body on the 

formation and development by an agent of a relation to the 

admissibility of risk, the value of another’s property, the 

value of his own car, the relation to the bodies of other 

agents, the value of his own life, the value of the lives of 

other agents, etc. However, some other issues imply the 

need for some additional verifications. Among others, we 

can mention the following issues. Under certain conditions, 

a  human driver can solve a number of problems that are no t  

directly related to driving. In particular, he can provide first 

aid. The ability of humans to drive does not mean their 

ability to live on the road. Virtual reality allows to study 

human behavior in a wide range of settings. The problem of 

misperception of egocentric distances in virtual 

environments is well known. A number of studies have 

shown that the ability to move significantly affects the 

perception of environments [27]. Thus, in the general case, 

the absence of a body can significantly affect the 

perceptions of the agent. Therefore, in addition to the Turing 

test, the vehicle must pass some kind of perception test. It is 

clear that additional verifications for these and previously 

considered issues can be included in the analogue of the 

Turing test. However, it seems that passing such a test 

should be much more difficult. In particular, at least some 

additional tests seem necessary. In particular, we can 

consider some important tests that should be established for 

autonomous vehicles. We assume that these tests must be 

passed by an autonomous vehicle but a re presumably not 

implied by the spirit of the Turing test and, as a result, may 

not be provided by a direct analogue of the Turing test.  

• Practical test of driving skills. The autonomous 

vehicle must demonstrate not only theoretical 

knowledge but also pra ctical driving skills. It 

should be noted that the demonstration of practica l 

skills can reveal some intellectual abilities that are 

difficult to verify during a theoretical test. 

• Health test. Such a test concerns not only the 

technical condition of the autonomous vehicle. The 

original Turing test allows passing in relatively 

comfortable conditions. The autonomous vehicle 

must demonstrate high intelligence in relatively 

extreme conditions. In particular, the autonomous 

vehicle must demonstrate high intelligence when 

making quick decisions. In addition, the 

autonomous vehicle should not demonstrate a 
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significant decrease in intelligence during the 

working day. 

• Test of prediction skills. The autonomous vehicle 

must be able to predict important events and 

intentions. 

• Security test. The autonomous vehicle must 

demonstrate its ability to withstand the actions of 

intruders. 

• Body test. The autonomous vehicle must 

demonstrate at least the absence of negative 

consequences that may be associated with a lack o f  

body.  

• Coexistence test. The autonomous vehicle must 

demonstrate an opinion that would allow us to 

conclude about the possibility of successful 

coexistence. 

• Aging test. The autonomous vehicle must 

demonstrate a possibility of age-related changes.  

• Trust test. An autonomous vehicle must prove that 

it is trustworthy.  

• Overall performance test. The autonomous vehicle 

must justify that its appearance on the roads will 

not lead to a decrease in the productivity of the 

transport system. 

• No-harm test. The autonomous vehicle must justify 

that its appearance on the roads will at least not 

cause harm. 

III. NO-HARM TEST 

The introduction of various robotic technologies, like the 

introduction of any new technology, can cause some 
significant changes in society, business and many other areas 

important to humans. Some changes should be considered  a s 
obviously desirable. Some changes require at least a  more 

detailed analysis. Some changes may have significant 

negative consequences. Currently, there is no full 
understanding of the possible consequences. The study of the 

problem of unintended consequences of the introduction of 
robotic technologies is at the stage of forming research 

themes [28]. The potential consequences of autonomous 
transport should naturally be considered in the genera l 

context of robotic technologies. However, it is necessary to 
take into account the factor of acceptance of such 

technologies. It is well known that the acceptance of low 

complexity technologies is significantly higher [29]. 
Accordingly, the requirements for studying the possible 

consequences of the introduction of autonomous transport 

should be at least higher than average.  

A large number of intelligent technologies are being 
extensively implemented in various fields. Many researchers 

believe that in the future intelligent agents will become the 
primary mode of human-computer interaction [30]. 

However, we currently do not have a full understanding of 

the possible consequences of the introduction of intelligent 
technologies. Moreover, there are no generally accepted 

views on the assessment of such consequences. In particular, 
some researchers argue for the possibility of foreseeable a nd  

anticipated harm in the context of transformative service 
systems [31-33]. Some other researchers argue that no 

intended harms exist in the context of transformative serv ice 
systems [34]. It should be noted that the problems of harmful 

robotic actions attract significant attention of researchers [35-

37]. Some researchers believe that people should not trust 

robots because of the potential harm that can come from 
interacting with robots [38]. In some cases, avoiding harmful 

actions is seen as a duty of robots [39]. However, there are 
also completely different views on this issue. In particular, 

we can mention a new socio-technological ethical framework 

of augmented utilitarianism that has been developing 
extensively in recent years [40-43]. Augmented utilitarianism 

does not represent a normative theory [44]. Augmented 
utilitarianism suggests that developers should avoid solving 

difficult moral problems [45]. Moral boundaries should be 
programmed by users [45]. Thus, within the framework of 

the augmented utilitarianism, the moral character of a robot 
strictly depends on the current mood of the user. Taking in to  

account the mechanisms triggering robot abuse [46-48], 

augmented utilitarianism allows for the emergence of 
harmful robots as manifestations of a mocking attitude or 

hostility. It should be noted that some people abuse robots, 

believing that such actions are morally acceptable [49]. 

The various potential harmful consequences of the 
introduction of autonomous vehicles represent too broad an 

area of research. In this paper we have consider only some 
aspects of road safety. Improved road safety is typically seen  

as one of the main benefits of introducing autonomous 

vehicles [50,51]. When pointing out the possibility of 
achieving such benefit, researchers sometimes cite news and 

the results of mathematical modeling (see e.g. [51]). It is 
often assumed that the higher skills of autonomous drivers 

should lead to improved road safety. However, mathematical 
modeling results show that demonstrating the skills would 

take approximately 400 years [52]. Moreover, the analysis o f  
[52] shows that some aspects cannot be demonstrated. In this 

paper we do not consider the problem of demonstrating 

skills. We consider the relationship between skill level and 

road safety in terms of road accidents. 

Investigations of [53] indicate microsimulations as the 
main approach to traffic modeling. It should be noted that 

simulations are extensively used to solve various 
autonomous driving problems (see e.g. [54,55]). In 

particular, practical research of safety problems is 
significantly complicated by the relative rarity of road 

accidents and the undesirability of their reproduction in the 

real world. Random testing is quite acceptable for initial 
investigations (see e.g. [56]). Our approach is based on 

evolutionary machine learning methods [57]. For the first 
study of the problem of non-harm, we have considered a 

relatively simple environment. We are considering a model 
of artificial evolution for the environment. In particular, we 

have used an evolutionary generative model that is based  on  
descriptive representations [57]. It is assumed that 

evolutionary computation is supported by self -organising 

maps [57] that are used to categorize individuals and manage 
memory. It should be noted that individuals are not 

completely determined by the general evolutionary 

generative model.  

The general evolutionary generative model determines 
only the values of the main characteristics of individuals. 

Each individual has its own behavior. However, the behavior 
of each individual is based only on the model of simple 

Darwinian evolution. We deliberately avoid complex 

behavior patterns to reduce their impact on the perform a nce 
of the general model. It is assumed that all individuals m ove 

along the ring road in the same direction.  

Each individual starts moving from a parking lot located 

at a  random point on the road. The length of the route is three 
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circles. The motion ends at the parking lot. The motion 

resumes immediately after returning to the parking lot. The 
road has four lanes and a shoulder on the right. Driving on 

the shoulder is considered a violation. The system randomly 

generates a parking requirement on the shoulder.  

Initially, all individuals have random behavior settings 

and do not have combos. The behavior of individuals is 
determined by the basic parameters, aggressiveness, 

accuracy, discipline, attentiveness, ingenuity, conservatism, 
altruism. In addition, the behavior of individuals is 

determined by their preference for lanes depending on traffic. 
Aggressiveness determines the level of danger of maneuvers 

and the frequency of lane changes. Accuracy determines the 
accuracy of maneuvers. Discipline determines the tendency 

to break rules. Attention determines the visible area of the 

road. Ingenuity determines the complexity of the combos and 
their number. Conservativeness determines the tendency to 

change behavior parameters and change combos.  

As a fundamental basis for simulations of changes of 

parameter settings, we consider BORCGA-BOPSO hybrid 
genetic algorithm that has been proposed in the paper [58]. In 

particular, replacing the objective functions with appropria te 
inverse values is used to reduce the multiobjective 

optimization problem to a biobjective minimization problem. 

The generation of new combos is based on a simple artificia l 
evolution model that uses the complexity of the combo as a n  

input parameter. The complexity of the combo is adjusted by  
a recurrent neural network based on the success of previously 

generated combos. The choice between a changing parameter 
settings and a creating combos is determined by adversarial 

neural networks [59]. The functioning of neural networks is 
supported by the model of reinforcement learning that has 

been considered in the paper [60]. To introduce randomness, 

we consider two linear congruential generators with the 

recursive formulas  

31

31

[ 1] (16807 [ ])mod(2 1),

[ 1] (314159269 [ ])mod(2 1)

X i X i

X i X i

+ = −

+ = −
 

(see e.g. [61,62]). To generate random numbers, we use a  
shuffle F of the linear congruential generators with the 

steering Fibonacci word (see e.g. [63-65]). We consider 

random functions in the form 

0

( ) [ ] ,
r

k

k

f x a k x
=

=   

where it is assumed that [ ],0 ,a k k r  are random 

numbers whose values are determined by the generator F, r 
is a  random number which is determined by the lagged 

Fibonacci generator with the recursive formula  

32[ 31] ( [ 28] [ ])mod(2 )X i X i X i+ = + +  

(see e.g. [66]). The pseudo-random number generator 

XorShift has been used for seed generation [67].  

Altruism defines the tendency to take into account the 
interests of other individuals. Each parameter can take values 

from 1 to 100. The success of the next passage of the route 

for each individual is determined by the time and number o f  
dangerous situations. One of the values is basic. The second 

value should be within the acceptable range. If the discip line 
is more than 50 then the number of dangerous situations is 

basic. If the aggressiveness is more than 50 or the discipline 

is less than 50 then the time is basic. Successful completions 

are the basis for creating combos. Insufficient success 
requires changing parameter settings or creating combos. The 

level of change depends on the value of conservatism. I f  the 
conservativeness value is less than 30, then the settings 

change even after successful runs. After 5000 generations o f  

evolution, the population is divided into three groups 
depending on the value of the discipline, disciplined 

individuals (10%), normal individuals (20%), undisciplined 
individuals (70%). We remove some undisciplined 

individuals from the population and add the same number o f  
disciplined or normal artificial individuals. We obtain 

artificial individuals for population update by cloning natural 
individuals. Because the results of our simulations depend 

significantly on a number of random choices, we consider 

only the average values over 50 restarts of evolution. We 
have considered changes in the natural population by adding 

10%, 20%, 30%, 40%, 50%, 60% disciplined and normal 
individuals. The natural evolutionary background is given in 

Tab. 1, 2. We consider the results of evolution as the 
dependence of the change in the number of road accidents on 

the number of generations in Tab. 1. In particular, we 
consider three main groups of road accidents, vehicle 

collisions (C), violations of rules (V), dangerous maneuvers 

without formally violating the rules (D). In Tab. 2, we 
consider the dependence of the change in the population 

structure (disciplined individuals (X), normal individuals 
(Y), undisciplined individuals (Z)) on the number of 

generations.  

TABLE I. ACCIDENT RATES FOR THE NATURAL POPULATION 

G C V D 

100 100% 100% 100% 

200 99.61% 98.83% 99.38% 

1000 98.73% 97.28% 99.12% 

2000 97.28% 96.11% 93.19% 

TABLE II. EVOLUTION OF THE NATURAL POPULATION 

G X Y Z 

100 10.12% 21.04% 68.84% 

200 10.17% 22.85% 66.98% 

1000 11.13% 34.27% 54.60% 

2000 12.03% 42.19% 45.78% 

 

In most cases, we have obtained extremely unstable 

results. Relatively consistent results have been obtained only  

for a large number of normal individuals (see Tab. 3, 4) and a 

small number of disciplined individuals (see Tab. 5, 6).  

TABLE III. ACCIDENT RATES FOR A NORMAL ADDITION 

G C V D 

100 116.82% 27.22% 144.15% 

200 76.19% 23.56% 87.94% 

1000 7.21% 11.47% 22.78% 

2000 8.33% 12.77% 24.57% 

 

TABLE IV. EVOLUTION WITH A NORMAL ADDITION 
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G X Y Z 

0 10% 70% 20% 

100 9.34% 67.81% 22.85% 

200 8.96% 61.19% 29.85% 

1000 5.38% 83.91% 10.71% 

2000 5.44% 84.14% 10.42% 

 

TABLE V. ACCIDENT RATES FOR A DISCIPLINED ADDITION 

G C V D 

100 74.25% 66.77% 378.12% 

200 88.66% 76.92% 325.86% 

1000 126.33% 96.43% 239.24% 

2000 142.11% 112.21% 242.97% 

 

TABLE VI. EVOLUTION WITH A DISCIPLINED ADDITION 

G X Y Z 

0 30% 20% 50% 

100 32.17% 9.43% 58.40% 

200 21.72% 23.52% 54.76% 

1000 19.18% 27.71% 53.11% 

2000 18.32% 29.94% 51.74% 

 

A significant increase in normal individuals leads to 
some deterioration in safety. However, over time the 

situation improves significantly even in comparison with the 
initial. A small increase in the number of disciplined 

individuals has an obvious negative effect. For other cases, 

unstable results have been obtained under our conditions.  

For the case of the significant increase in normal 

individuals, we considered an additional option. The ability 
to unlearn is a well-known adaptation mechanism [18,68]. I n  

general, there are several different approaches to unlearning. 
Individuals have acquired the skill not only to create and 

complicate combos, but also to simplify and forget combos. 
In particular, it is a ssumed that the increase in dangerous 

situations requires the abandonment of the use of the most 

complex well-learned combos. The simplest actions or 
simplified versions of such combos should be used. The 

increase in dangerous situations may be a manifesta tion of 

two related facts. 

• The traffic situation has changed significantly.  

• The usual proven tactics are situationally dependent. 

In such conditions, the driver should abandon the use of 
proven tricks and act as simply as possible. A stable change 

in the traffic situation should lead to a complete rejection of 
proven combos or at least their radical revision. We have 

reproduced the experiments for the normal addition under the 

same conditions but with the unlearning option. The 
unlearning process is regula ted by a generative adversarial 

neural network [59]. Typically, unlearning is used to discard 
obsolete, redundant, and incorrect knowledge. Usually it is 

assumed that there are sufficiently clear criteria for 

identifying such knowledge. In our case, both combo 

generation and unlearning formally pursue a common 
purpose, improving driver performance. There is no clear 

evidence for the correct choice between generation and 
unlearning. So, proper management of the unlearning process 

requires taking into account a large number of significantly 

different parameters. In particular, we can mention such 
parameters as driver behavior, driver characteristics, current 

set of combos, specific changes in road traffic, specifics of 
the current dangerous situation. It is clear that the 

development of approaches to optimal unlearning requ ires a  
separate study. So, for initial investigations, we consider a 

generative adversarial neural network as a simple black box 
advisor. It is assumed that only new individuals have the skil l 

of unlearning. The results of the experiments are given in 

Tab. 7, 8. 

TABLE VII. ACCIDENT RATES WITH UNLEARNING 

G C V D 

100 98.31% 32.85% 119.39% 

200 43.45% 21.13% 76.18% 

1000 6.17% 10.23% 19.11% 

2000 5.68% 9.48% 17.88% 

 

TABLE VIII. EVOLUTION WITH UNLEARNING 

G X Y Z 

0 10% 70% 20% 

100 9.88% 69.32% 20.8% 

200 9.23% 67.54% 23.23% 

1000 7.91% 85.42% 6.67% 

2000 7.74% 87.28% 4.98% 

 

The results of the experiments demonstrate a significant 

reduction in the number of collisions and dangerous 

situations. The number of disciplined individuals decreases 

more slowly. 

IV. CONCLUSION 

In this paper we have argued that the direct analogue of 

the Turing test for autonomous vehicles is significantly 

more hard than the original Turing test. We have proposed a 

number of additional tests that could be used to license 

autonomous vehicles. Our experimental results reflect only 

initial study of the no-harm problem. More needs to be done 

to finalize a “Hippocratic Oath” for autonomous vehicles. 

Nevertheless, we have obtained sufficient results to state 

that the transition to mixed traffic can lead to a significant 

decrease in safety. In particular, replacing undisciplined 

drivers with disciplined ones generally does not lead to an 

increase in road safety. Accordingly, it is necessary to find 

special strategies to modify the qualitative structure of the 

driver population. Currently, the introduction of autonomous 

vehicles requires either a complete transition to autonomous 

drivers or maintaining the qualitative structure of the 

population. However, in some cases, a  significant reduction 

in the number of road accidents and some improvement in 
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the population structure are possible. So, the proposed 

model of evolutionary machine learning can be used for 

further research. In particular, the model can be used to find 

specific strategies for modifying the qualitative structure of 

the driver population.  
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