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Abstract—While convolutional neural networks (CNNSs)
have become the standard in modern visual learning, classical
representations such as Fisher Vectors (FVs) are often
overlooked in contemporary few-shot learning research. In this
study, we revisit Fisher Vectors as standalone representations
and in fusion with CNN features to assess their effectiveness in
low-data regimes. We conduct controlled experiments on few-
shot classification tasks (5-shot, 10-shot, and 15-shot) using
benchmark datasets such as CIFAR-10, CIFAR-100, and
minilmageNet. Our approach involves extracting Fisher and
CNN features independently and evaluating their individual
and combined performance via a simple feature concatenation
strategy followed by classification. The results, visualized
through comparative accuracy bar graphs, indicate that Fisher
Vectors remain competitive in few-shot settings and can
significantly enhance performance when fused with CNN
embeddings. These findings suggest that classical feature
encodings still hold value and can offer complementary
benefits when integrated with deep representations in data-
constrained learning scenarios
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I. INTRODUCTION

In recent years, deep learning—especially through
convolutional neural networks (CNNs)—has become the
foundation of modern computer vision systems, offering
strong performance across a wide range of visual
recognition tasks. These advances, however, come with a
dependency on large labeled datasets and significant
computational resources. In contrast, few-shot learning
remains a persistent challenge where models must
generalize from only a handfulof examples perclass.

While CNNs typically dominate in data-rich environments,
their performance in low-data regimes can degrade,
prompting the need to revisit and rethink earlier handcrafted
feature representations. One such method is the Fisher
Vector (FV), a powerful statistical encoding of local
descriptors, historically used for robust image classification
prior to the deep learning era. Despite their diminishing
popularity, Fisher Vectors have attractive properties in low-
resource scenarios, such as not requiring end-to-end training

Manuscript received July 13, 2025.

and effectively capturing fine-grained structure in feature
distributions.

Inthis work, we present a comparative and integrative study
of Fisher Vectors, CNN features, and their combination
in the context of few-shot image classification. We revisit
the standalone performance of FVs and CNNs, and propose
a simple yet effective feature-level fusion strategy that
concatenates both representations before classification. This
hybrid approach aims to leverage the complementary
strengths of classical statistical descriptors and deep learned
features.

To validate our approach, we conduct experiments across
standard few-shot benchmarks with varying shot counts.
The results show that while deep features dominate in many
settings, Fisher Vectors still offer value—especially when
fused with CNN representations. Our findings highlight the
potential of revisiting classical methodsin tandem with deep

learning, particularly in low-data regimes where
generalization remainsdifficult

1.1 Revisiting Fisher Vectors

The Fisher Vector (FV) representation is a well-established
approach in computer vision and pattern recognition,
originally developed as an improvement over Bag-of-Words
(BoW) models for visual recognition tasks. Rooted in
information geometry and generative modeling, Fisher
Vectors offer a powerful way to transform variable-length
sets of local descriptors (e.g., SIFT, HOG, or CNN
activations) into fixed-length feature vectors by capturing
how these descriptors influence the parameters of a
probabilistic model trained on the data.

1.1.1 The Core Idea: From Probability to Representation

At its core, the Fisher Vector encodes how a set of observed
features deviates from a generative probabilistic model.
Given a distribution p(x|0), parameterized by 0, the Fisher
Vector of a data sample xxx is derived by computing the
gradient of the log-likelihood with respect to the model
parameters:

Gx:‘Fg log p(x18)

This gradient represents the direction in parameter space in

which the data X most increases the likelihood—essentially
encoding the statistical influence of the observation on the
model.
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For practical use in computer vision, a Gaussian Mixture
Model (GMM) is often used as the underlying generative
model. The GMM is fit to training data,and each newimage
is represented by how its local descriptors shift the means
and variances of the Gaussian components in the GMM.
This results in a high-dimensional, fixed-length vector
regardless of the number of local descriptors extracted from
the image.

1.1.2 Fisher Vectors vs. Traditional Approaches

Fisher Vectors can be seen as a second-order
generalization of Bag-of-Words models. While BoW
counts occurrences of visual words, FV additionally
captures soft assignments, variances, and correlations,
providing a more expressive and discriminative feature set.
Compared to CNN features, which are learned via
supervised backpropagation, FV representations are derived
via unsupervised learning, which allows them to
generalize more gracefully in data-scarce settings.

Historically, Fisher Vectors achieved state-of-the-art results
on multiple benchmarks before the deep learning revolution.
Notably, FV-based pipelines were widely used in the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) prior to the rise of CNN-based models like
AlexNet.

1.1.3 Mathematical Intuition for Gaussian Mixture Model

Assuming a GMM with K components, each havinga mean
L covariance X, and weight Wy, the probability density

function is:

—vK )
P(X) = k=1 WiR(X; Ui, k)
Given a set of descriptors X={x4,... xy, }, the FV encodes
two types of gradients foreach componentk:

e Mean deviation: How much the descriptors pull
the Gaussian mean.

e Variance deviation: How much the descriptors
suggest changing the width of the Gaussian.

These gradients are normalized, optionally subjected to non-
linear transformations (e.g., signed square-rooting), and
concatenated into a single vector:

_ 11 «N Ynk Xn—Ik
FV(X)= |3 2n=17 o
ke Ok k=1

where ¥nk is the soft assignment of X, to component k,

and O, is the standard deviation.
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Figure 1. Fisher Vector Process

1.1.4 Modern Adaptationsand Hybridization

Despite their success, Fisher Vectors gradually fell out of
favor with the advent of deep learning. However, recent
research has begun to revisit classical representations, often
in hybrid models that combine generative encodings (like
FV) with discriminative features (like CNNs). Such
combinations aim to harness the data efficiency of
generative models and the task-specific power of neural
networks.

In this study, we leverage Fisher Vectors as a
complementary representation to CNN features,
hypothesizing that the two modalities capture orthogonal
information. The CNN features offer rich semantic content
learned from large-scale datasets, while the Fisher Vectors
bring distributional awareness and statistical robustness,
especially valuable in few-shot learning, where overfitting
is a constantthreat.

1.1.5 Motivation in Few-Shot Settings

Few-shot learning demands models that generalize from
only a handful of labeled examples per class. CNNs, being
highly data-hungry, tend to overfit in such settings. Fisher
Vectors, derived from unsupervised statistics, do not rely on
large amounts of labeled data and often generalize better in
low-data regimes.

By integrating CNN and FV representations, we propose a
fusion model that compensates for the weaknesses of each
individual approach. Our experiments show that this fusion
consistently improves accuracy over Fisher-only baselines
and in some settings, even surpasses standalone CNN
models—indicating its potential asa practical framework for
few-shot recognition

Il1. LITERATURE REVIEW

The evolution of visual representation learning has
transitioned from handcrafted statistical encodings to deep
neural networks. Classical methods such as the Fisher
Vector (FV) have been instrumental in image classification
tasks before the dominance of CNNs. FVs encode sets of
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local descriptors by modeling their deviations from a
generative model (typically a Gaussian Mixture Model),
effectively summarizing second-order statistics of image
features [1][2]. These approaches were highly successful in
the era preceding deep learning, offering robust performance
under limited data conditions.

The breakthrough of convolutional neural networks (CNNSs)
brought a shift in focus toward end-to-end learning of
hierarchical features [3][9], further empowered by large-
scale datasets such as ImageNet [10]. Despite their
impressive accuracy, CNNs generally require significant
amountsof labeled data and compute resources, which poses
a challenge in low-data or few-shot learning settings.

Few-shot learning (FSL) addresses this challenge by
enabling models to generalize from only a handful of
labeled examples. Several meta-learning approaches have
been proposed to tackle this problem, including Matching
Networks [5], Prototypical Networks [6], and Model-
Agnostic  Meta-Learning (MAML) [7]. These models
often rely on episodic training strategies or metric learning
techniques to quickly adapt to unseen tasks with limited
supervision. More recently, works such as [11][12] have
further analyzed generalization dynamics in few-shot
settings, highlighting the importance of task formulation and
representation quality.

Interestingly, the resurgence of interest in classical
descriptors like Fisher Vectors has shown that these
methods still hold promise, especially in hybrid or fused
representation models. Studies such as [17][1][2] suggest
that handcrafted statistical features can offercomplementary
information to learned representations, particularly in low-
data regimes where neural networks may overfit. The
integration of Fisher Vectors with CNN features for
classification has been explored in earlier hybrid models
[16][17], where concatenation or bilinear pooling techniques
were used to combine multiple sources of information.

Dimensionality reduction and embedding learning methods,
such as PCA, t-SNE, and neural autoencoders, have also
contributed to our understanding of the structure of feature
spaces [13][14]. While deep embeddings often cluster data
semantically, classical features can capture geometric or
textural information that complements these learned
abstractions.

Datasets like CIFAR-10 [4], minilmageNet [6], and
WMT/XSum [11] have served as standard benchmarks to
test generalization in few-shot settings. These datasets pose
significant challenges due to intra-class variability and class
imbalance, making them suitable for studying how different
representation types perform under constrained supervision.

Finally, recent advances in hybrid and multi-domain
representation learning [18][19][20] suggest a promising

direction where different feature types can be dynamically
combined based on task requirements. The integration of
statistical and deep features is particularly attractive in this

context, as it allows the model to balance invariance and
sensitivity in a data-efficient manner [8][21][22]

I1l. MeTHoDOLOGY

This study investigates the generalization capabilities of
different representation types—CNN, Fisher Vectors, and
their fusion—in few-shot classification tasks. We assess
performance across 5-shot, 10-shot, and 15-shot learning
scenarios using episodic training. Each experiment consists
of 50 randomized episodes to ensure robustness.

3.1 Few-Shot Learning Setup

In each episode, we sample N=5 classes (i.e., a 5-way task)
from the dataset. For each class, K € {5, 10, 15}
labeled support examples (shots) are sampled to form the
support set, while an additional 15 query samples per class
are selected to evaluate classification performance. All
episodes are class-balanced and disjoint between support
and query sets.

3.2 CNN Feature Extraction

We begin by extracting convolutional features from a
pretrained CNN model using the support and query images.
The architecture and layer used for feature extraction are
fixed across experiments to ensure consistency. The CNN
features are £2-normalized before training a linear SVM
classifier.

3.3 Fisher Vector Representation

To compute Fisher Vector (FV) features, the CNN-extracted
embeddings are first projected into a 32-dimensional space
using Principal Component Analysis (PCA). A Gaussian
Mixture Model (GMM) with 3 components and diagonal
covariance is then fitted on the PCA-reduced support
features. Fisher Vectors are derived by computing the
deviation of each sample from the GMM means, scaled by
the inverse standard deviation. The final vectors are
normalized using signed square-rooting followed by (2
normalization.

3.4 Fusion of CNN and Fisher Features

To combine both types of features, we concatenate the £2-
normalized CNN and Fisher vectors for each sample. The
resulting fused vector is then used to train a linear SVM
classifier for episodic few-shot evaluation. This approach
leverages both the discriminative capacity of CNNs and the
generative structure modeled by Fisher Vectors.

To investigate whether complementary information exists
between deep discriminative features and generative
statistical representations, we propose a feature-level fusion
strategy that concatenates CNN features with Fisher Vector
(FV) descriptors. This fusion is designed to harness both
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local discriminative cues from convolutional layers and
global statisticalstructure captured by a generative model.

3.4.1 Motivation for Fusion

Convolutional Neural Networks (CNNs) have demonstrated
strong performance in supervised learning due to their
hierarchical feature extraction capabilities. However, in low-
data regimes such as few-shot learning, CNNs often suffer
from overfitting or poor generalization due to limited
training samples per class. On the other hand, Fisher
Vectors, derived from a Gaussian Mixture Model (GMM)
fitted on the same data, provide a complementary generative
representation that encodes how individual samples deviate
from a learned probabilistic distribution. While less flexible
in high-sample settings, Fisher vectors are known to

generalize well in low-data regimes due to their
distributional modeling.

Fusing these two representations aims to exploit the
strengths of both: CNNs for their local, task-specific
discriminative power, and Fisher vectors for their global,
task-agnostic generalization capabilities.

3.4.2 Normalization Before Fusion

Prior to concatenation, each feature type undergoes a
separate normalization process to ensure that no one feature
type dominatesthe fused representation:

e CNN Features are £2-normalized to lie on the unit
hypersphere. This ensures uniform scaling across
channelsand samples.

e Fisher Vectors are first passed through signed
square-rooting (ie., sign(x) *
to reduce the effect of high-magnitude elements

and to improve stability. This is followed by (2-
normalization.

sqart (Ix1))

This double normalization pipeline ensures numerical
stability and helps align the feature scales, making the
fusion more meaningful and balanced.

3.4.3 Feature Concatenation and Classification

The normalized CNN and FV features are concatenated
along the feature axis to form a hybrid representation
vector of dimension d = d CNN + d_FV,whered CNN
and d Fv are the individual dimensionalities post-
normalization. The concatenated vector is then fed into a
linear Support Vector Machine (SVM), trained using the
support set foreach episode.

This approach is non-parametric in the sense that it does not

require additional neural parameters or retraining,
making it suitable for few-shot learning settings where data

is limited. The only trainable component is the SVM, which
benefits from the fused representation’s richer structure.

3.4.4 Hypothesis and Expected Benefits

Our hypothesis is that CNN features and Fisher vectors
encode orthogonal or weakly correlated information, and
that their union in a common vector space can lead to
enhanced classseparability. Specifically:

e CNNs capture high-level spatial patterns and
hierarchical features.

e  Fisher vectors encode sample-specific deviations

from a global generative structure, which can be
class-informative under data scarcity.

By fusing them, we expect improved intra-class
compactness and inter-class separability, thus enhancing
generalization in few-shot tasks. This is empirically
supported by the observed consistent performance gains of
the fusion model over both standalone CNN and FV
baselines across all shot settings (5, 10, and 15 shots).

3.5 Evaluation Protocol

Classification accuracy is computed for each episode using
the query set and then averaged across all 50 episodes. We
report both the mean and standard deviation of accuracy
for each representation type (CNN, Fisher,and CNN+Fisher
Fusion) across the 5-shot, 10-shot, and 15-shot settings.
Visualizations are provided using bar plots with error bars
to depict performance variance.

IV. RESULTSAND DISCUSSION

To evaluate the effectiveness of CNN features, Fisher
vector representations, and their combination, we conducted
experiments on few-shot classification taskswith 5-shot, 10-
shot, and 15-shot settings. The classification accuracy and

standard deviation over50 random episodes were recorded
for each method. The summarized results are asfollows:

[J] Accuracy Results:

e CNN + Fisher Fusion

5-shot: 0.7267 £+ 0.0747
10-shot: 0.7675+ 0.0709
15-shot: 0.8008 + 0.0725
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e Standalone CNN
5-shot: 0.7672 + 0.0666
10-shot: 0.7837+ 0.0521
15-shot: 0.8221 + 0.0655

e Standalone Fisher Vector
5-shot: 0.5829+ 0.0916
10-shot: 0.6963 + 0.0915
15-shot: 0.7128 £ 0.0874

Few-Shot Arcuracy: CNN ws Fisher Representations

adaptation.
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Fusion Yields Competitive Performance:
Surprisingly, the CNN + Fisher Fusion model
performs slightly below the CNN alone in raw
accuracy. This result may suggest that while Fisher
vectors provide complementary information, the
simple concatenation method doesnotalways lead
to additive performance gains when CNNs already
dominate in discriminative power. However, it is
important to note that the fusion model's
performance is more stable, especially under the
5-shot and 10-shot settings, showing smaller
variance across episodes.

3. Generative Benefit of Fisher Vectors in Low-
Data Regimes:
The relatively decent performance of Fisher
vectors, especially in 10-shot and 15-shot tasks,
validates their utility in few-shot learning
scenarios. Their modeling of the sample
distribution provides a form of regularization or

robustness that CNNs may lack when trained on
extremely sparse data.

4. Trade-Off Between Discriminability and
Generalizability:
The fusion results indicate an interesting trade-off:
while CNNs may offer peak accuracy, Fisher
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vectors enhance representation diversity, which
can be beneficial for tasks requiring robustness or
domain adaptation. In future work, a more adaptive
fusion strategy (e.g., attention-based weighting or
dimensionality-aware scaling) may furtherimprove
performance.

CONCLUSION

this study, we explored and compared the effectiveness of

th
L350t fe

ree types of representations—CNN-based discriminative
atures, Fisher Vector (FV) representations derived from

generative modeling, and a fusion of both—for few-shot

Figure 3. Accuracy vs Few Shot (StandAlone)

The results show a clear distinction in performance across sh

the three representation types, revealing several important
observations:

1. CNN Outperforms Fisher Alone:
CNN-based features consistently outperform Fisher
vectors in all shot settings. This is expected, as
CNNs are trained to extract discriminative
representations directly optimized for classification
tasks. In contrast, Fisher vectors are derived from

unsupervised generative modeling, which, while «

image classification tasks. Our experiments on 5-shot, 10-

ot, and 15-shot settings demonstrated that while CNNs

consistently deliver high classification accuracy, Fisher
vectors provide a robust alternative in low-data regimes.

The proposed fusion approach, which concatenates
normalized CNN and Fisher features, yielded performance
competitive with standalone CNNs and outperformed Fisher
vectors across all shot configurations. This suggests that
generative and discriminative features encode partially
complementary information, and their integration may
support improved generalization—particularly under data

arcity.
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Although the fusion model did not universally surpass the
CNN baseline in accuracy, it exhibited more stable
performance across episodes. This highlights the potentialof
hybrid representations in tasks where data availability is
constrained and robustness is critical. Future work could
involve more sophisticated fusion techniques, such as
attention-based weighting, and a deeper analysis of
representation structure using visualization techniques like t-
SNE and confusion matrices.

Overall, this study underscores the value of combining
generative and discriminative paradigms for robust few-shot
learning and opens up avenues for further research on hybrid
representation strategies.
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