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Abstract—While convolutional neural networks (CNNs) 

have become the standard in modern visual learning, classical 
representations such as Fisher Vectors (FVs) are often 

overlooked in contemporary few-shot learning research. In this 

study, we revisit Fisher Vectors as standalone representations 

and in fusion with CNN features to assess their effectiveness in 

low-data regimes. We conduct controlled experiments on few-
shot classification tasks (5-shot, 10-shot, and 15-shot) using 

benchmark datasets such as CIFAR-10, CIFAR-100, and 

miniImageNet. Our approach involves extracting Fisher and 

CNN features independently and evaluating their individual 

and combined performance via a simple feature concatenation 
strategy followed by classification. The results, visualized 

through comparative accuracy bar graphs, indicate that Fisher 

Vectors remain competitive in few-shot settings and can 

significantly enhance performance when fused with CNN 

embeddings. These findings suggest that classical feature 
encodings still hold value and can offer complementary 

benefits when integrated with deep representations in data-

constrained learning scenarios 
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extraction, representation learning, hybrid embeddings, low-

data classification, feature fusion, image classification, classical 
descriptors, deep learning 

 

I. INTRODUCTION 

 

In recent years, deep learning—especially through 

convolutional neural networks (CNNs)—has become the 

foundation of modern computer vision systems, offering 

strong performance across a wide range of visual 

recognition tasks. These advances, however, come with a 

dependency on large labeled datasets and significant 

computational resources. In contrast, few-shot learning 

remains a persistent challenge where models must 

generalize from only a handful of examples per class. 

While CNNs typically dominate in data -rich environments, 

their performance in low-data  regimes can degrade, 

prompting the need to revisit and rethink earlier handcrafted 

feature representations. One such method is the Fisher 

Vector (FV), a  powerful statistical encoding of local 

descriptors, historically used for robust image classification 

prior to the deep learning era. Despite their diminishing 

popularity, Fisher Vectors have attractive properties in low-

resource scenarios, such as not requiring end-to-end training 
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and effectively capturing fine-grained structure in feature 

distributions. 

In this work, we present a comparative and integrative study  

of Fisher Vectors, CNN features, and their combination 

in the context of few-shot image classification. We revisit 

the standalone performance of FVs and CNNs, and propose 

a simple yet effective feature-level fusion strategy that 

concatenates both representations before classification. Th is 

hybrid approach aims to leverage the complementary 

strengths of classical statistical descriptors and deep learned 

features. 

To validate our approach, we conduct experiments across 

standard few-shot benchmarks with varying shot counts. 

The results show that while deep features dominate in many 

settings, Fisher Vectors still offer value—especially when 

fused with CNN representations. Our findings highlight the 

potential of revisiting classical methods in tandem with deep 

learning, particularly in low-data regimes where 

generalization remains difficult 

1.1 Revisiting Fisher Vectors 

The Fisher Vector (FV) representation is a well-established 

approach in computer vision and pattern recognition, 

originally developed as an improvement over Bag-of-Words 

(BoW) models for visual recognition tasks. Rooted in 

information geometry and generative modeling, Fisher 

Vectors offer a powerful way to transform variable-length 

sets of local descriptors (e.g., SIFT, HOG, or CNN 

activations) into fixed-length feature vectors by capturing 

how these descriptors influence the parameters of a 

probabilistic model trained on the data. 

1.1.1 The Core Idea: From Probability to Representation  

At its core, the Fisher Vector encodes how a set of observed 

features deviates from a generative probabilistic model. 

Given a distribution p(x∣θ), parameterized by θ, the Fisher 

Vector of a data sample xxx is derived by computing the 

gradient of the log-likelihood with respect to the model 

parameters: 

 

This gradient represents the direction in parameter space in 

which the data x most increases the likelihood—essentially 

encoding the statistical influence of the observation on the 

model. 
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For practical use in computer vision, a Gaussian Mixture 

Model (GMM) is often used as the underlying generative 

model. The GMM is fit to training data, and each new image 

is represented by how its local descriptors shift the means 

and variances of the Gaussian components in the GMM. 

This results in a high-dimensional, fixed-length vector 

regardless of the number of local descriptors extracted from 

the image. 

1.1.2 Fisher Vectors vs. Traditional Approaches 

Fisher Vectors can be seen as a second-order 

generalization of Bag-of-Words models. While BoW 

counts occurrences of visual words, FV additionally 

captures soft assignments, variances, and correlations, 

providing a  more expressive and discriminative feature set. 

Compared to CNN features, which are learned via 

supervised backpropagation, FV representations are derived 

via unsupervised learning, which allows them to 

generalize more gracefully in data-scarce settings. 

Historically, Fisher Vectors achieved state-of-the-art results 

on multiple benchmarks before the deep learning revolution . 

Notably, FV-based pipelines were widely used in the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) prior to the rise of CNN-based models like 

AlexNet. 

1.1.3 Mathematical Intuition for Gaussian Mixture Model 

Assuming a GMM with K components, each having a mean 

,  covariance , and weight , the probability density 

function is: 

         p(x) = ) 
Given a set of descriptors X={ ,... , }, the FV encodes 

two types of gradients for each component k: 

• Mean deviation: How much the descriptors pull 

the Gaussian mean. 

• Variance deviation: How much the descriptors 

suggest changing the width of the Gaussian. 

These gradients are normalized, optionally subjected to non-

linear transformations (e.g., signed square-rooting), and 

concatenated into a single vector: 

FV(X) =   

where  is the soft assignment of  to component k, 

and   is the standard deviation. 

 

                    Figure 1. Fisher Vector Process 

1.1.4 Modern Adaptations and Hybridization 

Despite their success, Fisher Vectors gradually fell out of 

favor with the advent of deep learning. However, recent 

research has begun to revisit classical representations, often 

in hybrid models that combine generative encodings (like 

FV) with discriminative features (like CNNs). Such 

combinations aim to harness the data efficiency of 

generative models and the task-specific power of neural 

networks. 

In this study, we leverage Fisher Vectors as a 

complementary representation to CNN features, 

hypothesizing that the two modalities capture orthogonal 

information. The CNN features offer rich semantic content 

learned from large-scale datasets, while the Fisher Vectors 

bring distributional awareness and statistical robustness, 

especially valuable in few-shot learning, where overfitting 

is a constant threat. 

1.1.5 Motivation in Few-Shot Settings 

Few-shot learning demands models that generalize from 

only a handful of labeled examples per class. CNNs, being 

highly data-hungry, tend to overfit in such settings. Fisher 

Vectors, derived from unsupervised statistics, do not rely on 

large amounts of labeled data and often generalize better in 

low-data  regimes. 

By integrating CNN and FV representations, we propose a 

fusion model that compensates for the weaknesses of each 

individual approach. Our experiments show that this fusion 

consistently improves accuracy over Fisher-only baselines 

and in some settings, even surpasses standalone CNN 

models—indicating its potential as a practical framework for 

few-shot recognition 

II. LITERATURE REVIEW 

 

The evolution of visual representation learning has 

transitioned from handcrafted statistical encodings to deep 

neural networks. Classical methods such as the Fisher 

Vector (FV) have been instrumental in image classification 

tasks before the dominance of CNNs. FVs encode sets of 
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local descriptors by modeling their deviations from a 

generative model (typically a Gaussian Mixture Model), 

effectively summarizing second-order statistics of image 

features [1][2]. These approaches were highly successful in 

the era preceding deep learning, offering robust performance 

under limited data conditions. 

The breakthrough of convolutional neural networks (CNNs) 

brought a shift in focus toward end-to-end learning of 

hierarchical features [3][9], further empowered by large-

scale datasets such as ImageNet [10]. Despite their 

impressive accuracy, CNNs generally require significant 

amounts of labeled data and compute resources, which poses 

a challenge in low-data or few-shot learning settings. 

Few-shot learning (FSL) addresses this challenge by 

enabling models to generalize from only a handful of 

labeled examples. Several meta -learning approaches have 

been proposed to tackle this problem, including Matching 

Networks [5], Prototypical Networks [6], and Model-

Agnostic Meta-Learning (MAML) [7]. These models 

often rely on episodic training strategies or metric learning 

techniques to quickly adapt to unseen tasks with limited 

supervision. More recently, works such as [11][12] have 

further analyzed generalization dynamics in few-shot 

settings, highlighting the importance of task formulation and 

representation quality. 

Interestingly, the resurgence of interest in classical 

descriptors like Fisher Vectors has shown that these 

methods still hold promise, especially in hybrid or fused 

representation models. Studies such as [17][1][2] suggest 

that handcrafted statistical features can offer complementary 

information to learned representations, particularly in low-

data regimes where neural networks may overfit. The 

integration of Fisher Vectors with CNN features for 

classification has been explored in earlier hybrid models 

[16][17], where concatenation or bilinear pooling techniques 

were used to combine multiple sources of information. 

Dimensionality reduction and embedding learning methods, 

such as PCA, t-SNE, and neural autoencoders, have also 

contributed to our understanding of the structure of feature 

spaces [13][14]. While deep embeddings often cluster data 

semantically, classical features can capture geometric or 

textural information that complements these learned 

abstractions. 

Datasets like CIFAR-10 [4], miniImageNet [6], and 

WMT/XSum [11] have served as standard benchmarks to 

test generalization in few-shot settings. These datasets pose 

significant challenges due to intra -class variability and class 

imbalance, making them suitable for studying how different 

representation types perform under constrained supervision. 

Finally, recent advances in hybrid and multi-domain 

representation learning [18][19][20] suggest a promising 

direction where different feature types can be dynamically 

combined based on task requirements. The integration of 

statistical and deep features is particularly attractive in this 

context, as it allows the model to balance invariance and 

sensitivity in a data -efficient manner [8][21][22] 

III. METHODOLOGY 

This study investigates the generalization capabilities of 

different representation types—CNN, Fisher Vectors, and 

their fusion—in few-shot classification tasks. We assess 

performance across 5-shot, 10-shot, and 15-shot learning 

scenarios using episodic training. Each experiment consists 

of 50 randomized episodes to ensure robustness. 

3.1 Few-Shot Learning Setup 

In each episode, we sample N=5 classes (i.e., a  5-way task) 

from the dataset. For each class, K ∈ {5, 10, 15} 

labeled support examples (shots) are sampled to form the 

support set, while an additional 15 query samples per class 

are selected to evaluate classification performance. All 

episodes are class-balanced and disjoint between support 

and query sets. 

3.2 CNN Feature Extraction 

We begin by extracting convolutional features from a 

pretrained CNN model using the support and query images. 

The architecture and layer used for feature extraction are 

fixed across experiments to ensure consistency. The CNN 

features are ℓ2-normalized before training a linear SVM 

classifier. 

3.3 Fisher Vector Representation 

To compute Fisher Vector (FV) features, the CNN-extracted 

embeddings are first projected into a 32-dimensional space 

using Principal Component Analysis (PCA). A Gaussian 

Mixture Model (GMM) with 3 components and diagonal 

covariance is then fitted on the PCA-reduced support 

features. Fisher Vectors are derived by computing the 

deviation of each sample from the GMM means, scaled by 

the inverse standard deviation. The final vectors are 

normalized using signed square-rooting followed by ℓ2 

normalization. 

3.4 Fusion of CNN and Fisher Features 

To combine both types of features, we concatenate the ℓ2-

normalized CNN and Fisher vectors for each sample. The 

resulting fused vector is then used to train a linear SVM 

classifier for episodic few-shot evaluation. This approach 

leverages both the discriminative capacity of CNNs and the 

generative structure modeled by Fisher Vectors. 

To investigate whether complementary information exists 

between deep discriminative features and generative 

statistical representations, we propose a feature-level fusion 

strategy that concatenates CNN features with Fisher Vector 

(FV) descriptors. This fusion is designed to harness both 
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local discriminative cues from convolutional layers and 

global statistical structure captured by a generative model. 

3.4.1 Motivation for Fusion 

Convolutional Neural Networks (CNNs) have demonstrated 

strong performance in supervised learning due to their 

hierarchical feature extraction capabilities. However, in low-

data regimes such as few-shot learning, CNNs often suffer 

from overfitting or poor genera lization due to limited 

training samples per class. On the other hand, Fisher 

Vectors, derived from a Gaussian Mixture Model (GMM) 

fitted on the same data, provide a complementary generative 

representation that encodes how individual samples deviate 

from a  learned probabilistic distribution. While less flexible 

in high-sample settings, Fisher vectors are known to 

generalize well in low-data regimes due to their 

distributional modeling. 

Fusing these two representations aims to exploit the 

strengths of both: CNNs for their local, task-specific 

discriminative power, and Fisher vectors for their global, 

task-agnostic generalization capabilities. 

3.4.2 Normalization Before Fusion 

Prior to concatenation, each feature type undergoes a 

separate normalization process to ensure that no one featu re 

type dominates the fused representation: 

• CNN Features are ℓ2-normalized to lie on the unit 

hypersphere. This ensures uniform scaling across 

channels and samples. 

• Fisher Vectors are first passed through signed 

square-rooting (i.e., sign(x) * sqrt(|x|)) 

to reduce the effect of high-magnitude elements 

and to improve stability. This is followed by ℓ2-

normalization. 

This double normalization pipeline ensures numerical 

stability and helps align the feature scales, making the 

fusion more meaningful and balanced. 

3.4.3 Feature Concatenation and Classification 

The normalized CNN and FV features are concatenated 

along the feature axis to form a hybrid representation 

vector of dimension d = d_CNN + d_FV, where d_CNN 

and d_FV are the individual dimensionalities post-

normalization. The concatenated vector is then fed into a 

linear Support Vector Machine (SVM), trained using the 

support set for each episode. 

This approach is non-parametric in the sense that it does not 

require additional neural parameters or retraining, 

making it suitable for few-shot learning settings where data 

is limited. The only trainable component is the SVM, which 

benefits from the fused representation’s richer structure. 

3.4.4 Hypothesis and Expected Benefits 

Our hypothesis is that CNN features and Fisher vectors 

encode orthogonal or weakly correlated information, and  

that their union in a common vector space can lead to 

enhanced class separability. Specifically: 

• CNNs capture high-level spatial patterns and 

hierarchical features. 

• Fisher vectors encode sample-specific deviations 

from a global generative structure, which can be 

class-informative under data scarcity. 

By fusing them, we expect improved intra-class 

compactness and inter-class separability, thus enhancing 

generalization in few-shot tasks. This is empirically 

supported by the observed consistent performance gains of 

the fusion model over both standalone CNN and FV 

baselines across all shot settings (5, 10, and 15 shots). 

3.5 Evaluation Protocol 

Classification accuracy is computed for each episode using 

the query set and then averaged across all 50 episodes. We 

report both the mean and standard deviation of accuracy 

for each representation type (CNN, Fisher, and CNN+Fisher 

Fusion) across the 5-shot, 10-shot, and 15-shot settings. 

Visualizations are provided using bar plots with error bars 

to depict performance variance. 

IV. RESULTS AND DISCUSSION 

       To evaluate the effectiveness of CNN features, Fisher 

vector representations, and their combination, we conducted 

experiments on few-shot classification tasks with 5-shot, 10-

shot, and 15-shot settings. The classification accuracy and 

standard deviation over 50 random episodes were recorded 

for each method. The summarized results are as follows: 

        Accuracy Results: 

• CNN + Fisher Fusion 

5-shot: 0.7267 ± 0.0747 

10-shot: 0.7675 ± 0.0709 

15-shot: 0.8008 ± 0.0725 
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                           Figure 2. Accuracy vs Few Shot(fusion) 

• Standalone CNN 

5-shot: 0.7672 ± 0.0666 

10-shot: 0.7837 ± 0.0521 

15-shot: 0.8221 ± 0.0655 

 

• Standalone Fisher Vector 

5-shot: 0.5829 ± 0.0916 

10-shot: 0.6963 ± 0.0915 

15-shot: 0.7128 ± 0.0874 

 

 

                 Figure 3. Accuracy vs Few Shot (StandAlone) 

The results show a clear distinction in performance across 

the three representation types, revea ling several important 

observations: 

1. CNN Outperforms Fisher Alone: 

CNN-based features consistently outperform Fisher 

vectors in all shot settings. This is expected, as 

CNNs are trained to extract discriminative 

representations directly optimized for classification 

tasks. In contrast, Fisher vectors are derived from 

unsupervised generative modeling, which, while 

powerful under limited data, lacks task-specific 

adaptation. 

2. Fusion Yields Competitive Performance: 

Surprisingly, the CNN + Fisher Fusion model 

performs slightly below the CNN alone in raw 

accuracy. This result may suggest that while Fisher 

vectors provide complementary information, the 

simple concatenation method does not always lea d  

to additive performance gains when CNNs already 

dominate in discriminative power. However, it is 

important to note that the fusion model's 

performance is more stable, especially under the 

5-shot and 10-shot settings, showing smaller 

variance across episodes. 

3. Generative Benefit of Fisher Vectors in Low-

Data Regimes: 

The relatively decent performance of Fisher 

vectors, especially in 10-shot and 15-shot tasks, 

validates their utility in few-shot learning 

scenarios. Their modeling of the sample 

distribution provides a form of regularization or 

robustness that CNNs may lack when trained on 

extremely sparse data. 

4. Trade-Off Between Discriminability and 

Generalizability: 

The fusion results indicate an interesting trade-off: 

while CNNs may offer peak accuracy, Fisher 

vectors enhance representation diversity, which 

can be beneficial for tasks requiring robustness or 

domain adaptation. In future work, a more adaptive 

fusion strategy (e.g., attention-based weighting or 

dimensionality-aware scaling) may further improve 

performance. 

V. CONCLUSION 

In this study, we explored and compared the effectiveness of 

three types of representations—CNN-based discriminative 

features, Fisher Vector (FV) representations derived from 

generative modeling, and a fusion of both—for few-shot 

image classification tasks. Our experiments on 5-shot, 10-

shot, and 15-shot settings demonstrated that while CNNs 

consistently deliver high classification accuracy, Fisher 

vectors provide a robust alternative in low-data regimes. 

The proposed fusion approach, which concatenates 

normalized CNN and Fisher features, yielded performance 

competitive with standalone CNNs and outperformed Fisher 

vectors across all shot configurations. This suggests that 

generative and discriminative features encode partially 

complementary information, and their integration may 

support improved genera lization—particularly under data 

scarcity. 
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Although the fusion model did not universally surpass the 

CNN baseline in accuracy, it exhibited more stable 

performance across episodes. This highlights the potential of 

hybrid representations in tasks where data  availability is 

constrained and robustness is critical. Future work could 

involve more sophisticated fusion techniques, such as 

attention-based weighting, and a deeper analysis of 

representation structure using visualization techniques like t -

SNE and confusion matrices. 

Overall, this study underscores the value of combining 

generative and discriminative paradigms for robust few-sho t  

learning and opens up avenues for further research on hybrid 

representation strategies. 
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