
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 1, 2025

7



Abstract— The security risks posed by (Structured

Queried Language) SQL injection attacks in web

applications necessitate more advanced detection

methods beyond conventional techniques. Deep learning

methods such as Long Short-Term Memory (LSTM)

networks have been employed to detect SQL injection

because they can handle sequential data such as SQL

queries. In SQL datasets, imbalances arise due to the

infrequent presence of malicious SQL queries. In this

study, we employ data augmentation techniques that

mitigate this issue and enable robust model training. The

augmentation involves substituting keywords with

randomly selected synonyms exclusively within malicious

SQL queries. This augmentation approach is

implemented on a sizable dataset, resulting in 89,143

samples post-augmentation, distinguishing this research

from the prevailing literature that predominantly

employs smaller datasets. The outcomes underscore the

model's robustness, yielding 99.4% accuracy, precision,

and F1 score. Compared to LSTM-based methodologies

for SQL injection (SQLi) detection, the proposed

approach showcases superior accuracy and efficiency in

identifying potential threats. This research significantly

fortifies cybersecurity measures for online applications

and databases.

Keywords— Cybersecurity, Deep Learning, Long

Short-Term Memory, Structured Query Language, SQL

Injection Detection.

Manuscript received October, 30, 2024.

K. Takyi is with the Computer Science Department, Kwame

Nkrumah University of Science and Technology, PMB Kumasi,

Ashanti Region, Ghana (corresponding author; phone number:

+233245999949; e-mail: takyikate @knust.edu.gh).

R. M. O. M Gyening is with the Computer Science Department,

Kwame Nkrumah University of Science and Technology, PMB

Kumasi, Ashanti Region, Ghana (e-mail:

rmo.mensah@knust.edu.gh).

M. Kobinnah is with the Computer Science Department, Kwame

Nkrumah University of Science and Technology, PMB Kumasi,

Ashanti Region, Ghana (e-mail: mkobbinah@gmail.com

@gmail.com).

M. A. Boateng is with the Mathematics Department, Kwame

Nkrumah University of Science and Technology, PMB Kumasi,

Ashanti Region, Ghana (e-mail:boateng.ma@knust.edu.gh

@knust.edu.gh).

S. Boadu-Acheampong is with the Computer Science Department,

Kwame Nkrumah University of Science and Technology, PMB

Kumasi, Ashanti Region, Ghana (e-mail:

samuelsonacheampong@gmail.com @gmail.com).

I. INTRODUCTION

The Internet is rapidly changing, with 4.4 billion

Internet users in 2019 and a growing number of online

services [1]. This growth in access to confidential

data, such as credit cards and social security numbers,

has increased interest in hacking [2]. Cybercrime costs

nearly $50 billion annually, with Structured Query

Language (SQL) injections responsible for over a fifth

of these attacks [3]. As new computer technology is

developed, there will be no immediate end to SQL

injection attacks, highlighting the need for continued

security measures to protect users' personal

information. SQL Injection (SQLi) is a prevalent

cyberattack that can damage websites and visitors by

putting incorrect SQL commands in web pages or

domain names and tricking the server into running

them [4]. The injection attack, as examined within this

context, is well acknowledged for its significant

severity owing to its capacity to undermine crucial

security services, encompassing confidentiality,

authentication, authorization, and integrity [5]. SQLi

attacks may potentially result in many consequences,

including but not limited to the unauthorized

acquisition of data, infringements against privacy,

financial ramifications, and detrimental impacts on the

reputation of individuals or entities. Identifying and

preventing SQLi attacks is crucial to minimize their

possible implications. Traditional methods rely on

rule-based or signature-based techniques, which have

limitations in identifying new or unknown attack

patterns.

Alternatively, machine learning (ML) techniques can

derive insights from previous examples of attacks and

detect further attacks based on learned patterns. Deep

learning algorithms have emerged as potential

methods for detecting SQL injection threats in recent

years due to their understanding of underlying

behaviors and patterns. (Long Short-Term Memory)

LSTM network models integrate feedback

connections, allowing deep learning to handle

sequential data and capture temporal relationships

between them. The study aims to create a novel

method for identifying SQLi attacks utilizing LSTM

networks. The study contributes to the current

literature on the deep learning approach to SQLi

detection through;

Enhancing SQL Injection Detection with Long Short-

Term Memory Networks in Deep Learning

 K. Takyi, R.M.O.M Gyening, M. Kobinnah, M. A. Boateng and S. Boadu-Acheampong

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 1, 2025

8

1. Evaluating the effectiveness of LSTM networks in

detecting SQLi attacks and contrasting their ability to

perform with traditional and signature rule-based

techniques.

2. Creating a deep learning model that uses LSTM

networks to identify SQLi attacks in web-based

applications.

3. Comprehensive assessment of the efficiency of the

developed model on various datasets and scenarios

and weighing its performance against that of an

existing deep learning method.

A. Background and Related Works

This section investigates SQLi attacks, current

conceptual literature, and the assessment of several

efficient detection strategies and their performance.

SQL Injection is a standard method hackers use to

steal information from websites, targeting application

layers [6]. This attack style exploits flaws in online

applications, allowing hackers to insert malicious SQL

queries into dynamic areas like login forms, reviews,

search pages, and online ordering. These areas are

vulnerable to SQL injection attacks, as they allow

SQL instructions to query the database directly. The

goal is to corrupt the execution of valid SQL

commands by inserting malicious SQL instructions

into the data plane input.

Some SQL injection threats include illegal or

logically incorrect queries, where the attacker runs

wrong queries to learn which servers contain

vulnerabilities; buffer overflow, where malicious

actors pollute the buffers to lead to floods and then

exploit [7]. Another technique is when the attackers

use blind SQLi to ask a database for true/false queries

and then use the application's logic to guess the

correct answer [8]. Lastly, hackers use the database

server vulnerabilities to lead the server to generate

incorrect SQL queries where they can perform SQL

injection attacks on the server's failure message to the

client Attacks [9]. It involves creating a database of

known attack signatures and using pattern-matching

algorithms to compare incoming SQL queries. The

Snort Intrusion Detection System can identify SQL

injection attacks. It uses a rule-based technique to

detect pre-existing attack patterns, which can be

customized to include user-specified rules [10].

Reference [11] developed a (Convolutional

Neural Network) CNN model using (University of

New South Wales - Network Benchmark) UNSW-

NB15, (Knowledge Discovery and Data Mining)

KDD99, and HTTP CSIC 2010 as training and

validation datasets. Using word embedding, they

obtained SQL injection payloads through data

cleaning and transformed them into vectors. The

model includes three padding convolution layers,

three max-pooling layers, one complete connectivity

layer, and one hidden layer. The convolution kernels

are 3x3, 4x4, and 5x5, respectively. The entire

connectivity and hidden layers are designed to avoid

overfitting, and the hidden layer provides the final

classification results. The experimental results show a

99.50% accuracy and 100% recall. Reference [12]

also analyzed an intelligent transportation system's

existing SQL injection detection algorithm. The paper

proposed a long short-term memory (LSTM) based

SQL injection attack detection method and a way to

generate SQL injection samples to augment the

dataset. This method can simulate SQL injection

attacks and develop valid positive samples to solve the

problem of overfitting. The experimental results

showed that the proposed method's accuracy,

precision, and F1 score were all above 92%.

 An SQL injection detection method based on

Artificial Neural Networks (ANN) has been presented

by [13] a large amount of SQL injection data was

analyzed to extract the relevant features; neural

network models (Multilayer Perceptron) MLP and

LSTM) were then trained. SQL injection attacks were

successfully identified using (Adaptive Boosting)

Adaboost. Reference [14] adopted the AdaBoost

algorithm to detect SQL injection attacks but

converted data into stumps. These stumps were

classified as weak or strong based on their weight

output.

Using SQL Injection Dataset, [15] proposed

multiple ML methods. Logistic Regression, AdaBoost,

Random Forest, Naive Bayes, and (Extreme Gradient

Boosting Classifier) XGBoost in the detection of SQL

Injection attacks. According to the paper, the best

method for detecting SQL injection is Naïve Bayes.

The limitation of the study is that the dataset may not

fully represent the diversity and complexity of real-

world SQL injection attacks. Additionally, the study

did not consider the impact of different web

application frameworks or technologies, which could

affect the effectiveness of the machine learning

methods in detecting SQL injection attacks.

II. MATERIALS AND METHODS

The proposed method for detecting SQLi attacks is

shown in Fig. 1.

A. Data Acquisition and Data Aggregation

This study focuses on SQL injection attacks using

a dataset obtained from Kaggle [16]. To gather the

data, SQLi [17], SQLiV2 [17], and SQLiV3[18] was

used. The obtained dataset thoroughly characterized

SQL injection attacks, allowing the proposed method

to be more generalizable to detect evolving attack

queries. SQLi, SQLiV2, and SQLiV3 datasets were

combined to create an aggregated dataset. The

combined datasets provided advantages such as

enhanced model generalization, improved feature

coverage, data variance management, increased data

volume, and diversity in training data. The increased

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 1, 2025

9

quantity of data lowered the chance of overfitting and

provided a more accurate estimate of attack patterns,

whereas the variety of the training data improved the

model's resilience and adaptability. The datasets used

are summarized in Table I.

Figure 1. The Proposed Framework

B. Data Pre-processing and Tokenizer

The second stage, "data pre-processing," included

essential tasks, such as cleaning the data, identifying

anomalies, deleting duplicates, and rectifying errors.

Data integrity was ensured through pre-processing

procedures. To prepare raw SQL queries for use by

deep learning models, tokenization is a vital step in

the data pre-processing process. Using a tokenizer

during data pre-processing enhances the accuracy and

efficiency of detecting SQLi attacks since it helps find

patterns and correlations in the data. Without regular

expressions, queries would need to include commas

and brackets.

C. Data Augmentation

To fix data imbalance problems, this study

employs a random replacement data augmentation

technique.

Algorithm; augment_sql (sql_query, n).

Input:

 sql_query: A SQL query string.

 n: The number of augmented queries to generate.

Output:

 A list of n augmented SQL query strings.

Steps:

 1. Initialize an empty list to store augmented queries.

 2. Define a list of SQL keywords and their potential

replacements.

 3. Split the SQL query into words.

 4. Repeat the augmentation process n times:

 a. Initialize an empty list to store the augmented

words.

 b. Iterate through the words in the SQL query:

 i. If the word is an SQL keyword, replace it with a

random synonym.

 ii. Otherwise, keep the word unchanged.

 c. Join the words back into a SQL query.

 d. Add the augmented query to the list.

 5. Return the list of augmented queries.

Table I. Summary of datasets used

Datasets Benign

Samples

Malicious

Samples

Total

samples

SQLi 3,072 1,128 4,830

SQLiV2 22,305 11,456 33,761

SQLiV3 19,255 11,337 30,592

Total 44632 23921 68553

D. Training and Testing Data

The proposed LSTM model is trained on a dataset

divided into training and testing sets, with 80% used

for training, 10% for testing, and 10% for validation.

The model learned to differentiate between legitimate

SQL queries and those indicating SQL injection

attacks. Backpropagation is applied to adjust LSTM

cell weights and biases, reducing the prediction errors.

The model's performance was evaluated during

training using a segregated testing set containing

unseen data. Dropout was employed to prevent

overfitting.

E. LSTM Model Architecture

Fig. 2 displays an LSTM-base architecture which

consists of three main layers: an embedding layer, an

LSTM layer, and a dense layer. The embedding layer

converts the input data into a 128-dimensional vector

space. This layer is a systematic approach in natural

language processing tasks, where words are typically

represented as vectors. In this scenario, the input data

is often textual, like SQL queries. The LSTM layer in

a recurrent neural network uses 128 LSTM cells to

store and update data from the embedding layer's

output. Its goal is to capture the sequential character

of input data, which is crucial for detecting SQL

injection attempts. Dropout rates are 20% for LSTM

and recurrent layers to prevent overfitting. This

random ignore of specific neurons during training

helps the model generalize better by preventing it

from memorizing the training input. The LSTM-based

model architecture handles textual inputs and

sequential characters simultaneously, generating

binary classification results to determine if the input

text is a SQL injection attack. This design minimizes

overfitting and increases generalization efficiency.

The possibility that the input text was an SQL

injection attack is represented by the returned value,

which might be between 0 and 1.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 1, 2025

10

Figure 2. LSTM Architecture

F. Proposed LSTM Model Training

The LSTM model is employed in the research to

detect SQL injection attacks utilizing 89,143 samples.

An embedding layer, an LSTM layer with dropout and

recurrent dropout, and a dense layer with sigmoidal

activation made up the model's three layers. To avoid

overfitting, the LSTM layer contained 128 units, a

20% dropout rate, and a 20% recurrent dropout rate.

The embedding layer supplied a 128-dimensional

vector representation of the input data. For SQL

injection attacks, the dense layer produced binary

classification output. 32 batches and 5 epochs of a

binary cross-entropy loss function are used to train the

LSTM network model. The Adam optimizer adjusted

model weights based on backpropagation gradients. A

10% validation split is used to monitor and

Evaluate the model's performance on new data. The

model processed the entire training dataset across

epochs and accurately detected SQL injection attacks.

G. Model Evaluation

During the evaluation phase, various metrics are

employed to assess the performance of a model. These

metrics include accuracy, recall, F1 score, precision,

ROC curve, confusion matrix, and false positive rate.

The evaluation of a neural network model's

performance on test data sets is based on four distinct

combinations, represented by the symbols TP (True

Positive), FP (False Positive), FN (False Negative),

and TN (True Negative) in the model's outputs.

The accuracy of the model may be determined

using the formula [19]:

TP TN
Accuracy

TP TN FP FN




  
 (1)

The term recall is used to depict the sensitivity or

true positive rate, which denotes the proportion of

positive instances that are accurately identified as

positive. Recall value is computed as follows [20]:

Re
TP

call
FN TP




 (2)

Precision is a metric that quantifies the likelihood

of an instance being correctly classified. The precision

score is computed as follows [13]:

Pr
TP

ecision
FP TP




 (3)

The F1 score is a metric utilized to evaluate the

accuracy of a model, which considers both its

precision and recall [21]:

2* *
1

*

recall precision
F Score

recall precision
 (4)

The False Positive Rate (FPR) is a significant

metric in various fields of study, as it denotes genuine

users who are identified as generating malevolent

requests. The calculation of the FPR can be performed

using the following formula. In scenarios involving

high throughput applications, many authorized users

may be unable to gain entry to the system [12].

FP TN
FPR

FP


 (5)

Receiver Operating Characteristics (ROC) analysis

examines an algorithm's performance under various

operating conditions. The ROC graph will

demonstrate the trade-off between the true positive

rate (TPR) and the false positive rate (FPR) at

different categorization levels. The model was

assessed at various threshold settings, and TPR versus

FPR was displayed to derive ROC curve points.

The confusion matrix is a specific table layout that

allows visualization of the performance of an

algorithm [22], as shown in Figure 3.

 Figure 3. Confusion Matrix

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 1, 2025

11

III. RESULTS AND DISCUSSION

This section presents the study's results and

analysis and showcases the research outcomes on the

effectiveness of LSTM networks in identifying SQL

injection attacks. The experiments' results described in

this section are compared to similar studies.

A. Epoch-Varying Test Results

The LSTM model's performance in detecting SQLi

attacks was evaluated over five epochs. In the initial

epoch, the model achieved a training accuracy of

98.58% with a training loss of 0.0469. The validation

accuracy was 99.36%, and the validation loss was

0.0224, as displayed in Fig. 4.

Figure 4. Training and Validation loss of the epoch

The model's performance increased during training,

peaking in the fifth epoch with a training accuracy of

99.55% and a training loss of 0.0195. Validation

accuracy was 99.44% then, with a validation loss of

0.0207, as shown in Fig. 5.

Figure 5. Training and Validation Accuracy

These results show that the LSTM model can

successfully train to learn and detect SQL injection

attacks

B. Results of the model

The LSTM model performed exceptionally well in

detecting SQLi attacks, obtaining a 99.4% detection

rate. It effectively reduced false positives while

maintaining a 99.4% precision rating. In addition, the

model correctly classified 99.4% of the data, resulting

in a remarkable overall accuracy of 99.4%. This

performance is comparable to the study [23], which

obtained 91% for the same metrics. The f1 score of

99.4%, which incorporates precision and recall,

indicates a balanced performance. High true negatives

(4412), high true positives (4446), and low false

positives (28 and 29) were revealed by the confusion

matrix. These findings support the LSTM model's

outstanding performance in identifying SQLi attacks,

demonstrating its capacity to identify assaults while

minimizing false positives reliably. Fig. 6 shows the

confusion matrix of the model, and Fig. 7 unveils the

false positive rate, true positive rate, and thresholds.

Figure 6. Confusion matrix

Figure 7. Thresholds, FP and TP

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 1, 2025

12

Table 1. Results of model performance

Accuracy Recall Precision F1 TN FP FN TP

99.4% 99.4% 99.4% 99.4% 4,412 28 29 4,446

Table 3. Metric performance of existing methods

C. Model comparison

Various models have been explored for their

effectiveness in research related to detecting SQL injection

threats. Reference [23] employed an MLP model, whereas

[25] and [23] utilized LSTM to detect SQL injection attacks.

[26] employed the CNN model for the same task. Table 4

illustrates the superior performance of the suggested LSTM-

based model in detecting SQL injection threats compared to

competing models. The LSTM model achieved outstanding

scores of 99% for Recall, Precision, Accuracy, and F1,

surpassing the models presented by [23]–[26] and which

obtained lower ratings across assessment measures. The

accuracy of the LSTM-based model in identifying SQL

injection attacks suggests its potential to enhance security

measures against these types of vulnerabilities.

IV. CONCLUSION AND FUTURE WORKS

Detecting SQL injection attacks using neural networks

and LSTM is the focus of our study. The accuracy score was

computed to assess how well the proposed model performed.

According to the study's findings, the LSTM-based model

achieved an excellent accuracy score of 99.4%. This means

that our proposed model correctly identified positive and

negative situations 99.4% of the time. The study's high

accuracy score for LSTM highlights its reliability and

resilience in identifying SQL injection attacks and its

potential to improve web application security against SQL

injection attacks.

Deep learning approaches such as attention mechanisms

and CNNs should be investigated to increase detection

accuracy and capture spatial relationships when detecting

SQL injection attempts using LSTM networks. Improving

the interpretability of LSTM-based systems is also essential

since it provides insights into decision-making processes.

V. ACKNOWLEDGMENT

We would like to acknowledge the Computer Science

Department of Kwame Nkrumah University of Science and

Technology for their support and encouragement.

REFERENCES

[1] M. M. Bujnowska-Fedak, J. Waligóra, and A. Mastalerz-Migas, "The

Internet as a source of health information and services,"

Advancements and Innovations in Health Sciences, pp. 1–16, 2019.

https://doi.org/10.1007/5584_2019_396

[2] M. Y. Bae, H. K. Lim, and D. J. Cho, "A study on security diagnosis

using automated Google hacking tools-focusing on the US

government website," Journal of Advances in Information

Technology, vol. 7, no. 2, pp. 93–97, 2016.

[3] P. Sadotra and C. Sharma, "SQL Injection Impact on Web Server and

Their Risk Mitigation Policy Implementation Techniques: An

Ultimate solution to Prevent Computer Network from Illegal

Intrusion.," International Journal of Advanced Research in

Computer Science, vol. 8, no. 3, 2017.

[4] D. A. Kindy and A.-S. K. Pathan, "A survey on SQL injection:

Vulnerabilities, attacks, and prevention techniques," in 2011 IEEE

15th international symposium on consumer electronics (ISCE),

IEEE, 2011, pp. 468–471.

https://doi.org/10.1109/ISCE.2011.5973873

[5] G. Deepa, P. S. Thilagam, F. A. Khan, A. Praseed, A. R. Pais, and N.

Palsetia, "Black-box detection of XQuery injection and parameter

tampering vulnerabilities in web applications," Int J Inf Secur, vol.

17, pp. 105–120, 2018.

https://doi.org/10.1007/s10207-016-0359-4

[6] W. B. Demilie and F. G. Deriba, "Detection and prevention of SQLI

attacks and developing compressive framework using machine

learning and hybrid techniques," J Big Data, vol. 9, no. 1, p. 124,

2022.

https://doi.org/10.1186/s40537-022-00678-0

[7] G. R. Chowdary, S. Neeraj, and S. Sparsha, "Machine Learning

Approaches for Different Cyberthreats," BMS Institute of technology

and Management, 2021.

https://doi.org/10.13140/RG.2.2.23437.67040

[8] M. H. U. Sharif, "Web Attacks Analysis and Mitigation Techniques,"

International Journal of Engineering Research & Technology

(IJERT), pp. 10–12, 2022.

[9] R. Dorai and V. Kannan, "SQL injection-database attack revolution

and prevention," J. Int’l Com. L. & Tech., vol. 6, p. 224, 2011.

[10] H. M. Elshafie, T. M. Mahmoud, and A. A. Ali, "Improving the

performance of the snort intrusion detection using clonal selection,"

in 2019 International Conference on Innovative Trends in Computer

Engineering (ITCE), IEEE, 2019, pp. 104–110.

https://doi.org/10.1109/ITCE.2019.8646601

[11] A. Luo, W. Huang, and W. Fan, "A CNN-based Approach to the

Detection of SQL Injection Attacks," in 2019 IEEE/ACIS 18th

International Conference on Computer and Information Science

(ICIS), IEEE, 2019, pp. 320–324.

https://doi.org/10.1109/ITCE.2019.8646601

[12] Q. Li, F. Wang, J. Wang, and W. Li, "LSTM-based SQL injection

detection method for intelligent transportation system," IEEE Trans

Veh Technol, vol. 68, no. 5, pp. 4182–4191, 2019.

https://doi.org/10.1109/TVT.2019.2893675

Authors Recall Precision Accuracy F1 Score

[24] 97% 98% 98% -

 [25] 74% 90% 96% 81%

[26] 96% 85% 94% -

[23] 91% 91% 91% 91%

Proposed model 99% 99% 99% 99%

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 13, no. 1, 2025

13

[13] P. Tang, W. Qiu, Z. Huang, H. Lian, and G. Liu, "Detection of SQL

injection based on artificial neural network," Knowl Based Syst, vol.

190, p. 105528, 2020. https://doi.org/10.1016/j.knosys.2020.105528.

[14] A. Sivasangari, J. Jyotsna, and K. Pravalika, "SQL Injection Attack

Detection using Machine Learning Algorithm," in Proceedings of the

5th International Conference on Trends in Electronics and

Informatics, ICOEI 2021, Institute of Electrical and Electronics

Engineers Inc., Jun. 2021, pp. 1166–1169.

https://doi.org/10.1109/ICOEI51242.2021.9452914

[15] P. Roy, R. Kumar, and P. Rani, "SQL injection attack detection by

machine learning classifier," in 2022 International Conference on

Applied Artificial Intelligence and Computing (ICAAIC), IEEE,

2022, pp. 394–400.

https://doi.org/10.1109/ICAAIC53929.2022.9792964

[16] Hussain, S. S. (2019). SQL injection dataset [Data set]. Kaggle.

https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-

dataset

[17] Hussain, S. S. (2020). SQL injection dataset [Data set]. Kaggle.

https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-

dataset

[18] Hussain, S. S. (2021). SQL injection dataset [Data set]. Kaggle.

https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-

dataset

[19] D. Wichers and J. Williams, "Owasp top-10 2017," OWASP

Foundation, vol. 3, p. 4, 2017.

[20] Y. Fang, Y. Li, L. Liu, and C. Huang, "DeepXSS: Cross site scripting

detection based on deep learning," in Proceedings of the 2018

international conference on computing and artificial intelligence,

2018, pp. 47–51.

https://doi.org/10.1145/3194452.3194469

[21] M. T. Muslihi and D. Alghazzawi, "Detecting SQL Injection On Web

Application Using Deep Learning Techniques: A Systematic

Literature Review," in 2020 Third International Conference on

Vocational Education and Electrical Engineering (ICVEE), 2020,

pp. 1–6.

https://doi.org/10.1109/ICVEE50212.2020.9243198

[22] S. Fraihat, S. Makhadmeh, M. Awad, M. A. Al-Betar, and A. Al-

Redhaei, "Intrusion detection system for large-scale IoT NetFlow

networks using machine learning with modified Arithmetic

Optimization Algorithm," Internet of Things, p. 100819, 2023.

[23] N. Joshi Padma, N. Ravishankar, M. B. Raju, and N. C. Ravi,

“Surgical Striking Sql Injection Attacks Using Lstm,” Indian Journal

of Computer Science and Engineering, vol. 13, no. 1, pp. 208–220,

Jan. 2022

[24] K. R. Jothi, N. Pandey, P. Beriwal, and A. Amarajan, "An efficient

SQL injection detection system using deep learning," in 2021

International Conference on Computational Intelligence and

Knowledge Economy (ICCIKE), IEEE, 2021, pp. 442–445.

https://doi.org/10.1109/ICCIKE51210.2021.9410674

[25] I. C. Potinteu and R. Varga, "Detecting Injection Attacks using Long

Short-Term Memory," in Proceedings - 2020 IEEE 16th

International Conference on Intelligent Computer Communication

and Processing, ICCP 2020, Institute of Electrical and Electronics

Engineers Inc., Sep. 2020, pp. 163–169.

https://doi.org/10.1109/ICCP51029.2020.9266177

[26] A. Falor, M. Hirani, H. Vedant, P. Mehta, and D. Krishnan, "A deep

learning approach for detection of sql injection attacks using

convolutional neural networks," in Proceedings of Data Analytics

and Management: ICDAM 2021, Volume 2, Springer, 2022, pp.

293–304. https://doi.org/10.1007/978-981-16-6285-0_24

