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 

Abstract— The security risks posed by (Structured 

Queried Language) SQL injection attacks in web 

applications necessitate more advanced detection 

methods beyond conventional techniques. Deep learning 

methods such as Long Short-Term Memory (LSTM) 

networks have been employed to detect SQL injection 

because they can handle sequential data such as SQL 

queries. In SQL datasets, imbalances arise due to the 

infrequent presence of malicious SQL queries. In this 

study, we employ data augmentation techniques that 

mitigate this issue and enable robust model training. The 

augmentation involves substituting keywords with 

randomly selected synonyms exclusively within malicious 

SQL queries. This augmentation approach is 

implemented on a sizable dataset, resulting in 89,143 

samples post-augmentation, distinguishing this research 

from the prevailing literature that predominantly 

employs smaller datasets. The outcomes underscore the 

model's robustness, yielding 99.4% accuracy, precision, 

and F1 score. Compared to LSTM-based methodologies 

for SQL injection (SQLi) detection, the proposed 

approach showcases superior accuracy and efficiency in 

identifying potential threats. This research significantly 

fortifies cybersecurity measures for online applications 

and databases. 
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I. INTRODUCTION 

The Internet is rapidly changing, with 4.4 billion 

Internet users in 2019 and a growing number of online 

services [1]. This growth in access to confidential 

data, such as credit cards and social security numbers, 

has increased interest in hacking [2]. Cybercrime costs 

nearly $50 billion annually, with Structured Query 

Language (SQL) injections responsible for over a fifth 

of these attacks [3]. As new computer technology is 

developed, there will be no immediate end to SQL 

injection attacks, highlighting the need for continued 

security measures to protect users' personal 

information. SQL Injection (SQLi) is a prevalent 

cyberattack that can damage websites and visitors by 

putting incorrect SQL commands in web pages or 

domain names and tricking the server into running 

them [4]. The injection attack, as examined within this 

context, is well acknowledged for its significant 

severity owing to its capacity to undermine crucial 

security services, encompassing confidentiality, 

authentication, authorization, and integrity [5]. SQLi 

attacks may potentially result in many consequences, 

including but not limited to the unauthorized 

acquisition of data, infringements against privacy, 

financial ramifications, and detrimental impacts on the 

reputation of individuals or entities. Identifying and 

preventing SQLi attacks is crucial to minimize their 

possible implications. Traditional methods rely on 

rule-based or signature-based techniques, which have 

limitations in identifying new or unknown attack 

patterns. 

Alternatively, machine learning (ML) techniques can 

derive insights from previous examples of attacks and 

detect further attacks based on learned patterns. Deep 

learning algorithms have emerged as potential 

methods for detecting SQL injection threats in recent 

years due to their understanding of underlying 

behaviors and patterns. (Long Short-Term Memory) 

LSTM network models integrate feedback 

connections, allowing deep learning to handle 

sequential data and capture temporal relationships 

between them. The study aims to create a novel 

method for identifying SQLi attacks utilizing LSTM 

networks. The study contributes to the current 

literature on the deep learning approach to SQLi 

detection through; 
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1. Evaluating the effectiveness of LSTM networks in 

detecting SQLi attacks and contrasting their ability to 

perform with traditional and signature rule-based 

techniques. 

2. Creating a deep learning model that uses LSTM 

networks to identify SQLi attacks in web-based 

applications. 

3. Comprehensive assessment of the efficiency of the 

developed model on various datasets and scenarios 

and weighing its performance against that of an 

existing deep learning method. 

A. Background and Related Works 

 

This section investigates SQLi attacks, current 

conceptual literature, and the assessment of several 

efficient detection strategies and their performance. 

SQL Injection is a standard method hackers use to 

steal information from websites, targeting application 

layers [6]. This attack style exploits flaws in online 

applications, allowing hackers to insert malicious SQL 

queries into dynamic areas like login forms, reviews, 

search pages, and online ordering. These areas are 

vulnerable to SQL injection attacks, as they allow 

SQL instructions to query the database directly. The 

goal is to corrupt the execution of valid SQL 

commands by inserting malicious SQL instructions 

into the data plane input. 

Some SQL injection threats include illegal or 

logically incorrect queries, where the attacker runs 

wrong queries to learn which servers contain 

vulnerabilities; buffer overflow, where malicious 

actors pollute the buffers to lead to floods and then 

exploit [7]. Another technique is when the attackers 

use blind SQLi to ask a database for true/false queries 

and then use the application's logic to guess the 

correct answer [8]. Lastly, hackers use the database 

server vulnerabilities to lead the server to generate 

incorrect SQL queries where they can perform SQL 

injection attacks on the server's failure message to the 

client Attacks [9]. It involves creating a database of 

known attack signatures and using pattern-matching 

algorithms to compare incoming SQL queries. The 

Snort Intrusion Detection System can identify SQL 

injection attacks. It uses a rule-based technique to 

detect pre-existing attack patterns, which can be 

customized to include user-specified rules [10]. 

Reference [11] developed a (Convolutional 

Neural Network) CNN model using (University of 

New South Wales - Network Benchmark) UNSW-

NB15, (Knowledge Discovery and Data Mining) 

KDD99, and HTTP CSIC 2010 as training and 

validation datasets. Using word embedding, they 

obtained SQL injection payloads through data 

cleaning and transformed them into vectors. The 

model includes three padding convolution layers, 

three max-pooling layers, one complete connectivity 

layer, and one hidden layer. The convolution kernels 

are 3x3, 4x4, and 5x5, respectively. The entire 

connectivity and hidden layers are designed to avoid 

overfitting, and the hidden layer provides the final 

classification results. The experimental results show a 

99.50% accuracy and 100% recall. Reference [12] 

also analyzed an intelligent transportation system's 

existing SQL injection detection algorithm. The paper 

proposed a long short-term memory (LSTM) based 

SQL injection attack detection method and a way to 

generate SQL injection samples to augment the 

dataset. This method can simulate SQL injection 

attacks and develop valid positive samples to solve the 

problem of overfitting. The experimental results 

showed that the proposed method's accuracy, 

precision, and F1 score were all above 92%. 

 An SQL injection detection method based on 

Artificial Neural Networks (ANN) has been presented 

by [13] a large amount of SQL injection data was 

analyzed to extract the relevant features; neural 

network models (Multilayer Perceptron) MLP and 

LSTM) were then trained. SQL injection attacks were 

successfully identified using (Adaptive Boosting) 

Adaboost. Reference [14] adopted the AdaBoost 

algorithm to detect SQL injection attacks but 

converted data into stumps. These stumps were 

classified as weak or strong based on their weight 

output.  

Using SQL Injection Dataset, [15] proposed 

multiple ML methods. Logistic Regression, AdaBoost, 

Random Forest, Naive Bayes, and (Extreme Gradient 

Boosting Classifier) XGBoost in the detection of SQL 

Injection attacks. According to the paper, the best 

method for detecting SQL injection is Naïve Bayes. 

The limitation of the study is that the dataset may not 

fully represent the diversity and complexity of real-

world SQL injection attacks. Additionally, the study 

did not consider the impact of different web 

application frameworks or technologies, which could 

affect the effectiveness of the machine learning 

methods in detecting SQL injection attacks.  

 

II. MATERIALS AND METHODS 

The proposed method for detecting SQLi attacks is 

shown in Fig. 1. 

A. Data Acquisition and Data Aggregation  

This study focuses on SQL injection attacks using 

a dataset obtained from Kaggle [16]. To gather the 

data, SQLi [17], SQLiV2 [17], and SQLiV3[18] was 

used. The obtained dataset thoroughly characterized 

SQL injection attacks, allowing the proposed method 

to be more generalizable to detect evolving attack 

queries. SQLi, SQLiV2, and SQLiV3 datasets were 

combined to create an aggregated dataset. The 

combined datasets provided advantages such as 

enhanced model generalization, improved feature 

coverage, data variance management, increased data 

volume, and diversity in training data. The increased 
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quantity of data lowered the chance of overfitting and 

provided a more accurate estimate of attack patterns, 

whereas the variety of the training data improved the 

model's resilience and adaptability. The datasets used 

are summarized in Table I. 

 

 
Figure 1. The Proposed Framework 

 

B. Data Pre-processing and Tokenizer 

The second stage, "data pre-processing," included 

essential tasks, such as cleaning the data, identifying 

anomalies, deleting duplicates, and rectifying errors. 

Data integrity was ensured through pre-processing 

procedures. To prepare raw SQL queries for use by 

deep learning models, tokenization is a vital step in 

the data pre-processing process. Using a tokenizer 

during data pre-processing enhances the accuracy and 

efficiency of detecting SQLi attacks since it helps find 

patterns and correlations in the data. Without regular 

expressions, queries would need to include commas 

and brackets. 

C.  Data Augmentation  

To fix data imbalance problems, this study 

employs a random replacement data augmentation 

technique. 

Algorithm; augment_sql (sql_query, n). 

Input: 

 sql_query: A SQL query string. 

 n: The number of augmented queries to generate. 

Output: 

 A list of n augmented SQL query strings. 

Steps: 

 1. Initialize an empty list to store augmented queries. 

 2. Define a list of SQL keywords and their potential 

replacements. 

 3. Split the SQL query into words. 

 4. Repeat the augmentation process n times: 

 a. Initialize an empty list to store the augmented 

words. 

 b. Iterate through the words in the SQL query: 

 i. If the word is an SQL keyword, replace it with a 

random synonym. 

 ii. Otherwise, keep the word unchanged. 

 c. Join the words back into a SQL query. 

 d. Add the augmented query to the list. 

 5. Return the list of augmented queries. 

 

Table I. Summary of datasets used 

Datasets Benign 

Samples 

Malicious 

Samples 

Total 

samples 

SQLi 3,072 1,128 4,830 

SQLiV2 22,305 11,456 33,761 

SQLiV3 19,255 11,337 30,592 

Total 44632 23921 68553 

D.  Training and Testing Data 

The proposed LSTM model is trained on a dataset 

divided into training and testing sets, with 80% used 

for training, 10% for testing, and 10% for validation. 

The model learned to differentiate between legitimate 

SQL queries and those indicating SQL injection 

attacks. Backpropagation is applied to adjust LSTM 

cell weights and biases, reducing the prediction errors. 

The model's performance was evaluated during 

training using a segregated testing set containing 

unseen data. Dropout was employed to prevent 

overfitting. 

E. LSTM Model Architecture  

Fig. 2 displays an LSTM-base architecture which 

consists of three main layers: an embedding layer, an 

LSTM layer, and a dense layer. The embedding layer 

converts the input data into a 128-dimensional vector 

space. This layer is a systematic approach in natural 

language processing tasks, where words are typically 

represented as vectors. In this scenario, the input data 

is often textual, like SQL queries. The LSTM layer in 

a recurrent neural network uses 128 LSTM cells to 

store and update data from the embedding layer's 

output. Its goal is to capture the sequential character 

of input data, which is crucial for detecting SQL 

injection attempts. Dropout rates are 20% for LSTM 

and recurrent layers to prevent overfitting. This 

random ignore of specific neurons during training 

helps the model generalize better by preventing it 

from memorizing the training input. The LSTM-based 

model architecture handles textual inputs and 

sequential characters simultaneously, generating 

binary classification results to determine if the input 

text is a SQL injection attack. This design minimizes 

overfitting and increases generalization efficiency. 

The possibility that the input text was an SQL 

injection attack is represented by the returned value, 

which might be between 0 and 1. 
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Figure 2. LSTM Architecture 

F. Proposed LSTM Model Training 

The LSTM model is employed in the research to 

detect SQL injection attacks utilizing 89,143 samples. 

An embedding layer, an LSTM layer with dropout and 

recurrent dropout, and a dense layer with sigmoidal 

activation made up the model's three layers. To avoid 

overfitting, the LSTM layer contained 128 units, a 

20% dropout rate, and a 20% recurrent dropout rate. 

The embedding layer supplied a 128-dimensional 

vector representation of the input data. For SQL 

injection attacks, the dense layer produced binary 

classification output. 32 batches and 5 epochs of a 

binary cross-entropy loss function are used to train the 

LSTM network model. The Adam optimizer adjusted 

model weights based on backpropagation gradients. A 

10% validation split is used to monitor and 

Evaluate the model's performance on new data. The 

model processed the entire training dataset across 

epochs and accurately detected SQL injection attacks. 

G.  Model Evaluation 

During the evaluation phase, various metrics are 

employed to assess the performance of a model. These 

metrics include accuracy, recall, F1 score, precision, 

ROC curve, confusion matrix, and false positive rate. 

The evaluation of a neural network model's 

performance on test data sets is based on four distinct 

combinations, represented by the symbols TP (True 

Positive), FP (False Positive), FN (False Negative), 

and TN (True Negative) in the model's outputs. 

The accuracy of the model may be determined 

using the formula [19]: 

TP TN
Accuracy

TP TN FP FN




  
  (1) 

The term recall is used to depict the sensitivity or 

true positive rate, which denotes the proportion of 

positive instances that are accurately identified as 

positive. Recall value is computed as follows [20]: 

Re
TP

call
FN TP




        (2)  

Precision is a metric that quantifies the likelihood 

of an instance being correctly classified. The precision 

score is computed as follows [13]: 

Pr
TP

ecision
FP TP




       (3) 

The F1 score is a metric utilized to evaluate the 

accuracy of a model, which considers both its 

precision and recall [21]: 

2* *
1

*

recall precision
F Score

recall precision
   (4) 

The False Positive Rate (FPR) is a significant 

metric in various fields of study, as it denotes genuine 

users who are identified as generating malevolent 

requests. The calculation of the FPR can be performed 

using the following formula. In scenarios involving 

high throughput applications, many authorized users 

may be unable to gain entry to the system [12]. 

FP TN
FPR

FP


          (5) 

Receiver Operating Characteristics (ROC) analysis 

examines an algorithm's performance under various 

operating conditions. The ROC graph will 

demonstrate the trade-off between the true positive 

rate (TPR) and the false positive rate (FPR) at 

different categorization levels. The model was 

assessed at various threshold settings, and TPR versus 

FPR was displayed to derive ROC curve points.  

The confusion matrix is a specific table layout that 

allows visualization of the performance of an 

algorithm [22], as shown in Figure 3. 

 

 Figure 3. Confusion Matrix 
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III. RESULTS AND DISCUSSION 

This section presents the study's results and 

analysis and showcases the research outcomes on the 

effectiveness of LSTM networks in identifying SQL 

injection attacks. The experiments' results described in 

this section are compared to similar studies. 

A. Epoch-Varying Test Results 

The LSTM model's performance in detecting SQLi 

attacks was evaluated over five epochs. In the initial 

epoch, the model achieved a training accuracy of 

98.58% with a training loss of 0.0469. The validation 

accuracy was 99.36%, and the validation loss was 

0.0224, as displayed in Fig. 4. 

 

Figure 4. Training and Validation loss of the epoch 

The model's performance increased during training, 

peaking in the fifth epoch with a training accuracy of 

99.55% and a training loss of 0.0195. Validation 

accuracy was 99.44% then, with a validation loss of 

0.0207, as shown in Fig. 5. 

 

Figure 5. Training and Validation Accuracy 

These results show that the LSTM model can 

successfully train to learn and detect SQL injection 

attacks 

B. Results of the model 

The LSTM model performed exceptionally well in 

detecting SQLi attacks, obtaining a 99.4% detection 

rate. It effectively reduced false positives while 

maintaining a 99.4% precision rating. In addition, the 

model correctly classified 99.4% of the data, resulting 

in a remarkable overall accuracy of 99.4%. This 

performance is comparable to the study [23], which 

obtained 91% for the same metrics. The f1 score of 

99.4%, which incorporates precision and recall, 

indicates a balanced performance. High true negatives 

(4412), high true positives (4446), and low false 

positives (28 and 29) were revealed by the confusion 

matrix. These findings support the LSTM model's 

outstanding performance in identifying SQLi attacks, 

demonstrating its capacity to identify assaults while 

minimizing false positives reliably. Fig. 6 shows the 

confusion matrix of the model, and Fig. 7 unveils the 

false positive rate, true positive rate, and thresholds. 

 

Figure 6. Confusion matrix 

 

Figure 7. Thresholds, FP and TP 
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Table 1. Results of model performance 

Accuracy   Recall Precision F1 TN FP FN TP 

99.4% 99.4% 99.4% 99.4% 4,412 28 29 4,446 

 

 

Table 3. Metric performance of existing methods 

 

 

 

 

 

 

 

C. Model comparison 

 

Various models have been explored for their 

effectiveness in research related to detecting SQL injection 

threats. Reference [23] employed an MLP model, whereas 

[25] and [23] utilized LSTM to detect SQL injection attacks. 

[26] employed the CNN model for the same task. Table 4 

illustrates the superior performance of the suggested LSTM-

based model in detecting SQL injection threats compared to 

competing models. The LSTM model achieved outstanding 

scores of 99% for Recall, Precision, Accuracy, and F1, 

surpassing the models presented by [23]–[26] and which 

obtained lower ratings across assessment measures. The 

accuracy of the LSTM-based model in identifying SQL 

injection attacks suggests its potential to enhance security 

measures against these types of vulnerabilities.  

IV. CONCLUSION AND FUTURE WORKS 

Detecting SQL injection attacks using neural networks 

and LSTM is the focus of our study. The accuracy score was 

computed to assess how well the proposed model performed. 

According to the study's findings, the LSTM-based model 

achieved an excellent accuracy score of 99.4%. This means 

that our proposed model correctly identified positive and 

negative situations 99.4% of the time. The study's high 

accuracy score for LSTM highlights its reliability and 

resilience in identifying SQL injection attacks and its 

potential to improve web application security against SQL 

injection attacks. 

Deep learning approaches such as attention mechanisms 

and CNNs should be investigated to increase detection 

accuracy and capture spatial relationships when detecting 

SQL injection attempts using LSTM networks. Improving 

the interpretability of LSTM-based systems is also essential 

since it provides insights into decision-making processes.  
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