
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

Abstract— Web application security is a critical aspect of

modern internet services, as vulnerabilities can lead to data
breaches, financial loss, and reputational damages. This study
evaluates four prominent web application security tools—
OWASP ZAP, BurpSuite Pro, Vega, and Wapiti—using the
Damn Vulnerable Web Application (DVWA) as a testbed. We
introduce a novel metric, the RD-Score, which combines
detection accuracy and resource efficiency to provide a
comprehensive assessment of each tool's performance. Our
evaluation considers the number of HTTP requests sent during
the scanning process, a crucial factor impacting scan duration,
resource consumption, and network load. By normalizing
HTTP requests and integrating them with the F1 Score, the
RD-Score offers a balanced measure of algorithmic efficiency
and detection capability. The results indicate that BurpSuite
Pro achieves the highest average RD-Score, demonstrating
superior balance between accuracy and resource usage,
followed by Vega, OWASP ZAP, and Wapiti. This study
highlights the importance of considering both detection
accuracy and resource efficiency in the selection of web
application security tools. The proposed RD-Score provides a
robust metric for evaluating these tools, offering valuable
insights for optimizing web application security. Future work
should extend this evaluation to a broader range of tools and
vulnerabilities, and explore real-world scenario testing to
enhance the applicability of the findings.

Keywords— Evaluation, OWASP, RD-Score, Web
Application Vulnerability Scanners (WAVS), Web
vulnerability.

I. INTRODUCTION
Web applications are integral to modern internet-based

services, ranging from online banking to e-commerce and
social media platforms. Ensuring the security of these
applications is paramount, as vulnerabilities can lead to data
breaches, financial loss, and damage to an organization's
reputation. Security vulnerability assessment tools, such as
OWASP ZAP, Burp Suite, Wapiti and Vega, play a critical
role in identifying and mitigating these risks.

While many studies focus on the accuracy of these tools in

terms of false positives (FP) and true positives (TP), there is
a significant aspect that often goes underexplored: the
volume of HTTP requests sent during the scanning process.
The number of HTTP requests can influence the efficiency

and effectiveness of a tool, impacting scan time, resource
utilization, and network load. Understanding this aspect is
crucial for optimizing the use of these tools in various
scenarios.

This study aims to investigate how contemporary tools

used for assessing security vulnerabilities in web
applications, such as Burp Suite, Wapiti and Vega, perform
under varying volumes of HTTP requests.

II. BACKGROUND

A. Web Vulnerability
Web application vulnerabilities are security flaws that can be
exploited by attackers, compromising the application's
security and granting unauthorized access. These
vulnerabilities often arise from inadequate input validation,
misconfigured web servers, and design flaws. They can lead
to various malicious actions, such as unauthorized data
access, code execution, or complete system takeover.

Key types of web vulnerabilities include:
• SQL Injection (SQLi): Allows attackers to execute

arbitrary SQL code on a database, potentially gaining
unauthorized access to sensitive data.

• Local File Inclusion (LFI): Exploits vulnerabilities to
include files present on the target server, that can lead to
information disclosure or remote code execution.

• Remote File Inclusion (RFI): Allows attackers to
include and execute files from a remote server, often
leading to remote code execution.

• Remote Code Execution (RCE): Enables attackers to
execute arbitrary code on the target server, potentially
gaining complete control over the application and
underlying system.

• Cross-Site Scripting (XSS): Enables attackers to inject
malicious scripts into web pages viewed by other users,
that can lead to data theft, session hijacking, and other
malicious activities

B. Black-Box Web Application Testing
Black-box testing evaluates web applications from an
outsider's perspective without access to internal workings.
This approach helps identify vulnerabilities by mimicking
external attacker actions.

Evaluating Web Application Vulnerability
Scanners: Introducing the RD-Score for

Comprehensive Performance Assessment
Rand Deeb

20

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

Active Scanners: Actively interact with the web application
by sending payloads to detect vulnerabilities such as SQLi,
XSS, LFI, RFI, and RCE. Tools like OWASP ZAP, Burp
Suite, and Acunetix are prominent examples. They are
thorough but can be time-consuming and generate high
network traffic.
Passive Scanners: Monitor traffic between the client and
server without injecting payloads. They analyze data flows
for anomalies but might miss certain vulnerabilities.

C. Black-Box Web Vulnerability Scanning Tools
Web application security tools are essential black-box

scanning tools for detecting and mitigating vulnerabilities in
web applications. The tools covered in this study include:

• OWASP ZAP (Zed Attack Proxy): An open-source tool

known for its ease of use and comprehensive scanning
capabilities. It is widely adopted due to its integration
with CI/CD pipelines.

• Burp Suite Pro: A popular commercial tool that offers
extensive features for security testing, including a
powerful proxy, scanner, and intruder module.

• Vega: An open-source web security scanner and testing
platform to test the security of web applications.

• Wapiti: An open-source web application vulnerability
scanner that allows you to audit the security of your web
applications.

III. RELATED WORK
Ramadan Yacin Ibrahim and Marshima Mohd Rosli [1]
assessed web application vulnerability scanners using SQL
injection attacks , focusing on SQLMap, OWASP ZAP, and
Skipfish. Their study compared the accuracy and response
time of these scanners in detecting SQL injection
vulnerabilities on predefined web applications, such as
Damn Vulnerable Web App (DVWA). The results indicated
that OWASP ZAP outperformed the other tools in terms of
accuracy and performance, highlighting the need for
continuous improvement of web application security
scanners.

In a study by Karthik Anagandula and Pavol Zavarsky, four
black-box scanners [2] (OWASP ZAP, BurpSuite
Professional, Wapiti, and Nessus) were evaluated for their
effectiveness in detecting stored XSS and SQL injection
vulnerabilities. Using two testbeds, WackoPicko and Scanit,
the research highlighted the need for improvements in attack
vector insertion and multi-step attack detection. The study
concluded that both commercial and open-source scanners
need better functionality to effectively detect stored XSS and
SQLI vulnerabilities.

Shafi Alassmi, Pavol Zavarsky, Dale Lindskog and Ron
Ruhl [3] evaluated the effectiveness of black-box web
application scanners in detecting stored XSS vulnerabilities
using a custom testbed called SimplifiedTB. The study
extended prior analyses by Bau et al. and Doupé et al. by

focusing on the challenges posed by stored XSS attacks.
They used scanners like Acunetix, N-Stalker, Rational
AppScan, and Zed Attack Proxy (ZAP), and assessed their
performance against three testbeds: PCI, WackoPicko, and
SimplifiedTB. Their findings highlighted the scanners' low
detection rates for stored XSS due to issues in response
analysis and recommended improvements for better
vulnerability detection

Yuan-Hsin Tung, Shian-Shyong Tseng, Jen-Feng Shih, and
Hwai-Ling Shan [4] evaluated various vulnerability scanners
with a focus on reducing redundant vulnerability alerts,
which they identified as a significant issue. They introduced
an advanced confusion matrix, incorporating true and false
duplication metrics, to improve the evaluation accuracy of
scanners. Using a testbed with web applications such as
WebGoat, WordPress, and WackoPicko, they demonstrated
their cost-effective evaluation approach, highlighting the
importance of addressing false positives and redundant alerts
in scanner assessments.

Sheetal Bairwa, Bhawna Mewara, and Jyoti Gajrani [5]
conducted a comprehensive study on various vulnerability
scanners to evaluate their effectiveness in detecting web
application vulnerabilities. The authors used tools like
Nmap, Nessus, Acunetix WVS, Nikto, and BurpSuite,
assessing their performance based on detection rates of SQL
Injection, XSS, and other common vulnerabilities. They
emphasized the significance of using multiple scanners to
cover a broader range of vulnerabilities and recommended
integrating different tools for a more thorough security
evaluation.

Malik Qasaimeh, Ala’a Shamlawi, and Tariq Khairallah [6]
evaluated five leading web vulnerability scanners: Acunetix
WVS, BurpSuite, NetSparker, Nessus, and OWASP ZAP.
They assessed these tools based on their ability to detect a
set of eight vulnerabilities derived from NIST and OWASP
standards. The study highlighted the varying performance of
scanners in terms of accuracy, false positives, and detection
capabilities.

Alsaleh, Mansour, Alomar, Noura, Alshreef, Monirah,
Alarifi, Abdulrahman, Al-Salman, AbdulMalik [7]
performed a comparative evaluation of four web
vulnerability scanners: Arachni, Wapiti, Skipfish, and two
versions of Arachni. They measured the performance based
on speed, crawler coverage, and detection accuracy using
benchmarks like WAVSEP and Altoro Mutual test cases.
The study found that Arachni 1.0.2 had the best crawling
coverage, while Skipfish was the fastest scanner. They also
noted significant variations in detection accuracy and
recommended further research to understand these
discrepancies.

S. Alazmi and D. C. De Leon [8] conducted a systematic
literature review focusing on the characteristics and
effectiveness of web application vulnerability scanners.
They compared multiple tools including Arachni, OWASP

21

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

ZAP, Wapiti, and Skipfish, assessing their detection rates for
SQL Injection and Cross-Site Scripting vulnerabilities. The
review highlighted significant variability in detection rates
among scanners and the need for comprehensive
benchmarks to assess the scanners accurately.

Rawaa Mohammed [9] conducted an assessment of six open-
source web vulnerability scanners by performing both
manual and automatic testing on various testbeds. Tools like
Paros Proxy, Wapiti, Skipfish, Nikto, Wfuzz, and
Netsparker were evaluated for their precision, recall, and F-
measure in detecting SQL Injection and Cross-Site Scripting
vulnerabilities. The study found that scanner efficiency
varied, with some tools performing better in certain types of
attacks.

Mrs. M. Sridevi and Dr. K.V.N. Sunitha [10] reviewed
common web vulnerabilities and the limitations of various
web security scanners. The study highlighted the challenges
of detecting vulnerabilities such as SQL Injection, XSS, and
CSRF using scanners like W3AF, IronWASP, ZAP, Syhunt
Dynamic, QualysGuard WAS, Wapiti, and Vega. It
emphasized the need for more efficient scanners and
proposed future enhancements to overcome the identified
limitations.

Yuan-Hsin Tung, Shian-Shyong Tseng, Jen-Feng Shih, and
Hwai-Ling Shan [11] developed W-VST, a testbed for
evaluating web vulnerability scanners. They tested various
tools, including OWASP ZAP and Skipfish, against W-VST
to measure their effectiveness in detecting vulnerabilities.
Their testbed provided a controlled environment to
systematically compare different scanners' performance,
focusing on metrics like detection accuracy, false positives,
and scanning speed. The study emphasized the critical role
of comprehensive benchmarking platforms in improving web
application security by enabling detailed scanner
evaluations.

IV. PROPOSED METRIC: RD-SCORE
In our evaluation, we introduce a new metric, the RD-Score,
designed to provide a comprehensive assessment of web
application vulnerability scanners by considering both their
detection accuracy and resource efficiency. The RD-Score is
calculated using the formula:

This metric integrates two crucial aspects of scanner
performance:
1) Detection Accuracy: Represented by the F1 Score,

which is a harmonic mean of precision and recall. The
F1 Score balances the trade-off between false positives
and false negatives, providing a single, cohesive
measure of a scanner's accuracy in identifying true
vulnerabilities without being misled by incorrect
detections.

2) Resource Efficiency: Represented by the normalized
number of HTTP requests. The number of HTTP

requests a scanner makes during the scanning process
directly impacts resource consumption, including
bandwidth, server load, and scan duration. Normalizing
these values ensures that the HTTP request count is
scaled between 0 and 1, making it comparable to the F1
Score.

The RD-Score penalizes the F1 Score by a factor of 0.2

times the normalized HTTP requests. This weighting factor
of 0.2 was carefully chosen to ensure that while resource
efficiency is considered, it does not overshadow the primary
goal of accurate vulnerability detection. The factor strikes a
balance, acknowledging that while fewer HTTP requests are
desirable to minimize resource usage, the primary function
of a scanner is to detect vulnerabilities accurately.

By subtracting 0.2 times the normalized HTTP requests

from the F1 Score, the RD-Score effectively highlights
scanners that achieve high accuracy with lower resource
consumption. This comprehensive metric allows for a more
nuanced comparison of scanners, emphasizing the
importance of both detection capabilities and operational
efficiency. The RD-Score thus serves as a valuable tool for
security professionals seeking to select the most effective
and efficient web vulnerability scanners for their needs.

V. METHODOLOGY
1) Environment setup:
The first step is to initialize the environment. This involves
setting up the following components:

• Testbed: we used the Damn Vulnerable Web

Application (DVWA) configured at all security levels
(low, medium, high),

• Operating system: the operating system used for the
tools and testbed.

• Web Application Vulnerability Scanners (WAVS): we
focused on OWASP ZAP, BurpSuite Pro, Vega, and
Wapiti.

The architecture of the setup is illustrated in Figure 1, which
includes three main components: The Web Application
Vulnerability Scanners (WAVS), a proxy server (Burp
Suite), and the DVWA

Fig 1 Architecture of the setup

2) Run the WAVs
Each security tool is executed to perform a comprehensive
scan of the test web applications. This involves configuring
the tools to interact with the DVWA through the proxy
server, ensuring that all levels of vulnerabilities are tested.
Multiple runs are conducted to account for variability and to
ensure the robustness of the results.

22

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

3) Collect Data
During the scanning process, data is collected from each
tool. This includes:
• WAVS Reports: Detailed reports generated by each

tool, listing detected vulnerabilities and their severity
levels.

• HTTP Logs: Logs of the number of HTTP requests sent
by each tool during the scanning process. This helps in
assessing the efficiency of the tools in terms of network
traffic generated.

4) Compute Metrics

The WAVs metric is computed based on the collected data,
considering factors like Precision, Recall, F1-Score, and our
proposed metric (RD-Score).

VI. RESULTS AND DISCUSSION
In this section, we present the results of our evaluation of

the web application security tools (WAVS) using the
proposed WAVs metric. The evaluation was performed on
the Damn Vulnerable Web Application (DVWA) at three
different security levels: low, medium, and high. For each
level, we present the results for five types of vulnerabilities:
SQL Injection (SQLi), Cross-Site Scripting (XSS), Remote
Code Execution (RCE), Local File Inclusion (LFI), and
Remote File Inclusion (RFI). The metrics included in the
results are Precision, Recall, F1-Score, and our proposed
WAVs metric, along with the counts of True Positives (TP)
and False Positives (FP).

A. Low Security Level
Table 1. Summary Performance Metrics for Low
Security Level

B. Medium Security Level
Table 2. Summary Performance Metrics for Medium
Security Level

 Precision Recall F1-Score RD-Score
OWASP ZAP 0. 6667 0.4 0.4444 0.4063
BurpSuite Pro 1 0.8 0.8 0.7514

Vega 1 0.6 0.6 0.5927
Wapiti 1 0.6 0.6 0.5962

C. High Security Level
Table 3. Summary Performance Metrics for High
Security Level

 Precision Recall F1-Score RD-Score
OWASP ZAP 0.222 0.2 0.2222 0.2222
BurpSuite Pro 1 0.9 0.9 0.8934

Vega 1 0.5 0.8333 0.8332
Wapiti 1 0.5 0.5556 0.3556

Table 4. Detailed Detection Results for Low Security Level

WAVS
SQLi XSS RCE LFI RFI ∑T

P ∑FP ∑FN Http Requests T
P FP T

P FP T
P FP T

P FP T
P FP

OWASP Zap 3 2 6 0 1 0 1 0 1 0 12 2 6 29215
BurpSuite Pro 1 0 9 0 1 0 1 0 1 0 13 0 5 32842

Vega 3 0 8 0 0 0 1 0 1 0 13 0 5 14502
Wapiti 3 0 4 0 2 0 1 0 0 0 10 0 8 14289

Table 5. Detailed Detection Results for Medium Security Level

WAVS
SQLi XSS RCE LFI RFI ∑T

P ∑FP ∑FN Http Requests T
P FP T

P FP T
P FP T

P FP T
P FP

OWASP Zap 1 3 4 0 0 0 1 0 0 0 6 3 9 28751
BurpSuite Pro 1 0 8 0 1 0 1 0 1 0 12 0 3 33817

Vega 1 0 6 0 0 0 1 0 1 0 9 0 6 15478
Wapiti 2 0 4 0 2 0 1 0 0 0 9 0 6 14522

Table 6. Detailed Detection Results for High Security Level

WAVS
SQLi XSS RCE LFI RFI ∑T

P ∑FP ∑FN Http Requests T
P FP T

P FP T
P FP T

P FP T
P FP

OWASP Zap 0 5 2 2 0 0 0 0 0 0 2 7 8 12379
BurpSuite Pro 0 0 7 0 1 0 1 0 0 0 9 0 1 31409

Vega 0 0 5 0 0 0 0 0 0 0 5 0 5 12801
Wapiti 0 0 2 0 1 0 1 0 1 0 5 0 5 86418

 Precision Recall F1-Score RD-Score

OWASP ZAP 0.8571 0.666
7 0.75 0.5844

BurpSuite Pro 1 0.722
2 0.8387 0.6387

Vega 1 0.722
2 0.8387 0.8373

Wapiti 1 0.555
6 0.7143 0.7143

23

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

Table [7] shows the average RD-Score across all the security
levels. These average RD-Scores provide a clear picture of
the overall performance of each tool.

Table 7. Average RD-Score for Each WAVS

WAVS Average RD-Score
OWASP ZAP (0.5844 + 0.4063 + 0.2222) / 3 = 0.4043
BurpSuite Pro (0.6387 + 0.7514 + 0.8934) / 3 = 0.7612

Vega (0.8373 + 0.5927 + 0.8332) / 3 = 0.7544
Wapiti (0.7143 .5962 + 0.3556) / 3 = 0.5554

VI CONCLUSION
In this study, we conducted a comprehensive evaluation of

four widely used web application security tools—OWASP
ZAP, BurpSuite Pro, Vega, and Wapiti—using the Damn
Vulnerable Web Application (DVWA) as our testbed. Our
evaluation introduced a novel metric, the RD-Score, which
considers both detection accuracy and resource efficiency,
providing a holistic measure of each tool's performance.

The RD-Score effectively integrates the F1 Score, which

balances precision and recall, with the normalized number of
HTTP requests to account for resource consumption. This
metric highlights tools that achieve high accuracy in
vulnerability detection while maintaining low resource
usage. By focusing on the number of HTTP requests, the
RD-Score provides a language-agnostic comparison, making
it a fair and effective measure across different
implementation languages. Additionally, it emphasizes
algorithmic efficiency, guiding improvements for better
performance in large-scale applications and resource-
constrained environments.

Our results demonstrated that BurpSuite Pro achieved the

highest average RD-Score across all security levels,
indicating its superior balance of accuracy and efficiency.
Vega followed closely, also showing strong performance.
OWASP ZAP and Wapiti, while effective, scored lower on
average, suggesting room for improvement in resource
management without compromising detection capabilities.
The study further revealed that high volumes of HTTP
requests could lead to longer scan times, increased resource
consumption, and network load, impacting the overall
performance and efficiency of the tools.

Our findings underscore the importance of considering both
detection accuracy and resource efficiency when selecting
web application security tools. The RD-Score proved to be a
valuable metric, providing a comprehensive assessment that
helps security professionals make informed decisions.

REFERENCES
[1] R. Y. Ibrahim and M. M. Rosli, "Evaluation of Web

Application Vulnerability Scanners using SQL Injection

Attacks," 2023 IEEE 8th International Conference on
Recent Advances and Innovations in Engineering
(ICRAIE), Kuala Lumpur, Malaysia, 2023, pp. 1-6, doi:
10.1109/ICRAIE59459.2023.10468295.

[2] K. Anagandula and P. Zavarsky, "An Analysis of
Effectiveness of Black-Box Web Application Scanners
in Detection of Stored SQL Injection and Stored XSS
Vulnerabilities," 2020 3rd International Conference on
Data Intelligence and Security (ICDIS), South Padre
Island, TX, USA, 2020, pp. 40-48, doi:
10.1109/ICDIS50059.2020.00012.

[3] Alassmi, S., Zavarsky, P., Lindskog, D., Ruhl, R.,
Alasiri, A., & Alzaidi, M. (2012). An Analysis of the
Effectiveness of Black-Box Web Application Scanners
in Detection of Stored XSSI Vulnerabilities.

[4] Yuan-Hsin Tung, Shian-Shyong Tseng, Jen-Feng Shih
and Hwai-Ling Shan, "A cost-effective approach to
evaluating security vulnerability scanner," 2013 15th
Asia-Pacific Network Operations and Management
Symposium (APNOMS), Hiroshima, 2013, pp. 1-3

[5] Bairwa, Sheetal & Mewara, Bhawna & Gajrani, Jyoti.
(2014). Vulnerability Scanners-A Proactive Approach
To Assess Web Application Security. International
Journal on Computational Science & Applications. 4.
10.5121/ijcsa.2014.4111.

[6] Qasaimeh, Mo'Nes & Shamlawi, A. & Khairallah, T..
(2018). Black box evaluation of web application
scanners: Standards mapping approach. Journal of
Theoretical and Applied Information Technology. 96.
4584-4596.

[7] Alsaleh, Mansour, Alomar, Noura, Alshreef, Monirah,
Alarifi, Abdulrahman, Al-Salman, AbdulMalik,
Performance-Based Comparative Assessment of Open
Source Web Vulnerability Scanners, Security and
Communication Networks, 2017, 6158107, 14 pages,
2017. https://doi.org/10.1155/2017/6158107

[8] S. Alazmi and D. C. De Leon, "A Systematic Literature
Review on the Characteristics and Effectiveness of Web
Application Vulnerability Scanners," in IEEE Access,
vol. 10, pp. 33200-33219, 2022, doi:
10.1109/ACCESS.2022.3161522.

[9] Rawaa Mohammed . Assessment of Web Scanner
Tools. International Journal of Computer Applications.
133, 5 (January 2016), 1-4.
DOI=10.5120/ijca2016907794

[10] Sridevi, M., & Sunitha, K. (2017). A Study on Different
Scanners and Their Limitations for Web Application
Vulnerabilities.

[11] Y. -H. Tung, S. -S. Tseng, J. -F. Shih and H. -L. Shan,
"W-VST: A Testbed for Evaluating Web Vulnerability
Scanner," 2014 14th International Conference on
Quality Software, Allen, TX, USA, 2014, pp. 228-233,
doi: 10.1109/QSIC.2014.50.

Rand Deeb - ITMO University, Saint Petersburg, Russia
(email: rand.sec96@gmail.com)

24

	I. INTRODUCTION
	II. Background
	A. Web Vulnerability
	B. Black-Box Web Application Testing
	C. Black-Box Web Vulnerability Scanning Tools

	III. related work
	IV. Proposed Metric: RD-Score
	V. Methodology
	VI. Results AND Discussion
	A. Low Security Level
	B. Medium Security Level
	C. High Security Level

	VI Conclusion
	References

