
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

Abstract—A class functionality in object-oriented

programming is a part of the application programming
interface (API). We reveal concepts related to the class
functionality. The functionality includes an abstract
functionality – a set of abstract methods. The main
characteristic of the functionality is its stability. The
functionality of a new version must ensure backward
compatibility. Version numbers are used to indicate backward
compatibility or incompatibility. Backward compatibility can
be source, binary, or functional. The evolution of the
functionality consists of its modification or extension. In case of
breaking changes, a good practice is to mark old methods as
deprecated without removing. The evolution of the abstract
functionality differs from the evolution of the class
functionality. Adding or removing a method in the abstract
functionality is backward-incompatible. Depending on the
change of the functionality in subclasses, inheritance can be
functionally extendible or functionally overridable. We
introduce a pattern style “Abstraction Raising” to improve
stability. The style consists of using more abstract items. We
identified such items for a type, variable, field, class, and
constructor. We demonstrate an example of using the pattern
style when changing the return type. We investigate
relationships between the class functionality and the
considered concepts in practice. We survey scientific articles
with statistical data characterizing the relationships.

Keywords—API, functionality, evolution, compatibility.

I. INTRODUCTION
The concept of reuse involves developing a program based
on existing software modules or systems [1]. Software
modules or systems can have different representations,
including libraries (see examples of libraries in [2–3]). The
removal of program fragments into libraries eliminates code
duplication [4]. Classes in object-oriented programming
using libraries we call client classes. Libraries provide
access to methods for solving problems through an
application programming interface (API).

II. MOTIVATION, THE PURPOSE OF THE STUDY,
AND THE ARTICLE ORGANIZATION

The core of the API is a class functionality. The
functionality is related to various concepts. These
relationships are not clearly described, which makes it
difficult to understand the functionality itself and its
evolution.

Manuscript received September 6, 2024.
A. Prutzkow is with the Ryazan State Radio Engineering University,

390005, Gagarin str., 59/1, Ryazan, Russia, and with Lipetsk State
Pedagogical University, 398020, Lenin str., 42, Lipetsk, Russia (e-mail:
mail@prutzkow.com).

The purpose of the study is to identify concepts related to
the functionality and, based on this, to improve the stability
of the functionality by introducing a pattern style.

In Part 1 of this article, we explore the concepts related to
the class functionality. In Part 2, we introduce the
“Abstraction Raising” pattern style that allows making
breaking changes non-breaking. In Part 3, we survey
statistical data that characterize the relationships between
the class functionality and the discussed concepts.

III. CONCEPT MAP
We explore the concepts related to the functionality and
depict them as a concept map (fig. 1).

Let's discuss these concepts in details.

IV. WHAT IS A CLASS FUNCTIONALITY
A class in object-oriented programming includes fields,
constructors, and methods. The values of the fields of a class
object determine the state of the object. Class methods
inherited by subclasses or intended for calling by objects of
other classes constitute the functionality of the class. We
name the set of class methods with the public modifier as a
public functionality.

The functionality is used by client classes to solve their
problems.

The main characteristic of the functionality is stability.
The stability of the functionality is its ability to be
unchanged when the class changes (based on [5]).

V. ABSTRACT FUNCTIONALITY
There are some cases when different classes must have the
same functionality:
• performing the same actions on objects of different

classes; for example, comparing, reading, and writing
objects;

• raising the level of abstraction of created objects and
hiding their classes from a client class.

In these cases, an abstract functionality is used. The
abstract functionality is a functionality that defines abstract
methods implemented by other classes. An abstract method
is a method without a body.

Interfaces and abstract classes define the abstract
functionality in the Java programming language.

Class functionality and its related concepts:
research and practice

Alexander Prutzkow

63

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

Version

Inheritance

Changes

Breaking Non-
breaking

Functionality

Abstract
Functionality

Compatibility

Backward
Forward

BinarySource Functional

API IAPI

Interface

Deprecation

Stability
Evolution

Fig. 1. Class functionality and related concepts

The abstract functionality can be divided into the
following types depending on how it is used by client
classes:
• external: client classes implement an abstract

functionality; for example, the Comparator interface;
• internal-external: client classes use objects of classes

that implement an interface, but don't create such
objects; for example, the java.sql.Connection interface;

• internal: not accessible for client classes.

VI. FUNCTIONALITY IS NOT A FUNCTIONAL
The class functionality should be distinguished from a
functional. The functional is a mapping of a number to a
function [6].

VII. INTERFACE, API, AND IAPI
Interface is an access point to a component that client
systems can reference to reuse functionalities [7].

We've explored other meanings of the “interface” term in
[8].

API include the collective public functionality of the
classes that constitute the library.

The characteristics of an API are stability,
maintainability, and documentation [7].

Internal API (IAPI) of a library is the collective
functionality of the classes that constitute the library, used
by objects of the classes of the library, but not by client
classes.

Different access modifiers are used for these interfaces:
• API – public;
• IAPI – protected, by default.

Modifiers in the Java language allow you to restrict
access to a class, subclass, or package. However, there is no
easy way to restrict access to only a specific part of a
package [9]. A common practice is to make package classes
public and use a naming convention that appends the word
“internal” [4, 7] to the name of the internal package (e.g.,
the org.elasticsearch.client.internal package) or the
@Internal annotation [9].

VIII. ANOTHER DEFINITION OF THE CONCEPT OF API
API also refers to a set of commands and their parameters
for working with web services. We call this API as web
API, but the details are beyond the scope of this article.
Some aspects discussed in this article are also relevant for
the web API. More about web API, its life cycle, REST and
GraphQL architectural styles can be read in [10–14].

IX. SOFTWARE CHANGES
The extendible or incorrectly designed functionality of a
class changes. According to ISO/IEC 14764, software
changes are divided into four types (see also [15]) with
examples:
• corrective – when errors are detected in the software;
• adaptive – when migrating to a new operating system;
• perfective – improvement of software characteristics;
• preventive – refactoring of a program or part of it to

improve its maintenance.
These changes are related as follows (fig. 2) [16]. The

arrows in the figure mean “lead to”.

Adaptive Perfective

Corrective

Preventive

Fig. 2. Relationships between types of changes

There are other classifications of software changes [17].

64

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

X. BACKWARD AND FORWARD COMPATIBILITY
When changing the functionality, it is necessary to ensure
backward compatibility so that client classes don't have to
be changed.

Backward compatibility is the property of a class (library)
to maintain the functionality of the program when the old
version of the class (library) is replaced by a new version.

Forward compatibility is the property of a class (library)
to maintain the functionality of the program when a new
version of the class (library) is replaced by an old version.

Ensuring backward compatibility is one of the challenges
of designing the functionality and APIs.

There are the following types of backward compatibility
of a class (library) (based on [18]):
• source compatibility – a program compiled with an old

version of a class (library) is compiled with a new
version of the class (library);

• binary compatibility – a program compiled with an old
version of a class (library) works with a new version of
the class (library);

• functional compatibility – a program compiled with a
new version of a class (library) produces the same result
as with the old version of the class (library).

Binary compatibility doesn't imply source compatibility.
Consider the example from [19] (listing 1). When replacing
the compiled version of a class (lines 1-6) to a new one
(lines 8-13) and running the already compiled ClientRunner
class, no error will occur. When recompiling the
ClientRunner class, a compilation error will occur.
Listing 1. An example of binary compatibility and source

incompatibility
1 // class version 1
2 public class Foo {
3 public static java.util.List<String> foo() {
4 return new java.util.ArrayList<String>();
5 }
6 }
7
8 // class version 2
9 public class Foo {
10 public static java.util.List<Integer> foo() {
11 return new java.util.ArrayList<Integer>();
12 }
13 }
14
15 // client program using the class
16 public class ClientRunner {
17 public static void main(String[] args) {
18 java.util.List<String> list = Foo.foo();
19 System.out.println(list.size());
20 }
21 }
↳

XI. VERSION, BACKWARD AND FORWARD COMPATIBILITY
Semantic versioning (semver) of classes is used to
demonstrate backward compatibility.

The designation of a stable version is as follows:
X.Y.Z,

where X is the major version number; Y is the minor version
number; Z is the patch number.

The rules for assigning version designations are as
follows [4]:
• if classes (libraries) have different major version

numbers, then no compatibility is guaranteed; for
example, versions 2.13.4 and 3.0.2 may be completely
incompatible;

• if classes have the same major version number, but
different minor version numbers, then the class with the
higher minor version number must be backward-
compatible with the class with the lower minor version
number; for example, a class with version 2.13.4 must
be backward-compatible with a class of version 2.5.3;

• if a class has the same major and minor version
numbers, then they must be forward- and backward-
compatible.

XII. EVOLUTION OF FUNCTIONALITY

A. Definition, reasons and basic approach
Evolution is a process of giving a class (library) new or
improving existing characteristics by changing this class
(library).

The reasons for the API evolution, and with it the
functionality, are introducing of new functions and the need
to improve quality (usability and maintainability) [20, 21].

Some changes in a class are breaking. A way to smooth
out such changes for client classes is to mark the methods
that will be removed as deprecated. Typically, methods are
removed in the class with the new major version number.

B. Breaking and non-breaking changes
Changes may be breaking or non-breaking.

Non-breaking changes include [22]:
• add method;
• pull up method;
• gain visibility;
• remove final modifier;
• add static modifier;
• depreciate method;
• extract method.

Breaking changes include [22]:
• remove method;
• lost visibility;
• change in return type;
• change in parameter list;
• change in exception list;
• add final modifier;
• remove static modifier;
• move method;
• rename method;
• push down method;
• inline method.

A detailed description of some of the listed non-breaking
changes with examples can be found in [23]. These changes
are called structural transformations. In [23] also breaking
behavioral modifications are listed:

65

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

• new method contract – change of preconditions or

postconditions of method execution, for example, for an
input parameters a requirement of null inequality
appears;

• implement new interface – an implementation of a new
interface is added to the class;

• changed events order – here the event is a situation, but
which the client object can react to;

• new enumeration constant – adding a new constant to
the enumeration.

Breaking changes are classified in [19].

C. Breaking changes and deprecated methods
The general approach to introducing breaking changes
involves three steps (introduce – deprecate – remove):
• introducing a new version of a method without deleting

its old version;
• marking the old version of the method as deprecated;
• removing the old version of a method when moving to a

new version of a class.
There are the following reasons to make a method

deprecated [24] with examples:
• avoid bad coding practices – use a constructor instead

of a method for setting a field value;
• design pattern – create an object using the “Builder”

pattern [25];
• dissent usage – an interface method that performs

default actions;
• functional defects – a method that doesn't perform

actions correctly;
• merged to existing method – adding new actions (such

as checking values) to a method makes another method
unnecessary;

• new feature introduced – a method replaced by a new
method;

• no dependency support – a method that depends on a
method that no longer exists;

• redundant method – the method is not called;
• renaming of feature – the method name is inaccurate or

doesn't comply with the new naming convention;
• security flaws – the method causes a vulnerability in the

program;
• separation of concerns – instead of a method, several

new methods are used;
• temporary feature – the method is introduced to solve

temporary problems.
TABLE 1. AWT AND SWING LIBRARY DEPRECATED METHODS

AND THEIR SHARES
Reason AWT, % Swing, %

Conformity to naming conventions 50.0 24.4
Simplification 16.7 4.9
Introduction of new concepts and
classes

11.4 4.9

Reducing coupling 1.8 7.3
Encapsulation 2.6 0
Conformity to supertype contracts 1.8 7.3
Deprecation without replacements 5.3 34.1
Redesign of existing features 10.5 17.1

The most frequent reasons to make a method deprecated
are new feature introduced, functional defects, design
pattern [24].

In [26] the AWT and Swing libraries are examined. The
following reasons for making a method deprecated and their
share are classified (table 1).

D. When are breaking changes good?
Let's say a class provides a connection between two network
nodes via a secure protocol. After some time, vulnerabilities
of this protocol were revealed and a decision was made to
switch to a new protocol. The new class doesn't provide
backward compatibility, forcing developers of client classes
to modify them and switch to a new protocol, eliminating
vulnerabilities. In this case, breaking changes improve the
security of the program.

XIII. EVOLUTION OF ABSTRACT FUNCTIONALITY

A. Differences from the functionality evolution,
techniques for non-breaking changes

The evolution of the external abstract functionality differs
from the evolution of the class functionality: changes in the
abstract functionality are backward-incompatible. The
reason is that the abstract functionality strictly defines the
functionality of classes, and changing the abstract
functionality involves changing the functionality of the
classes. The evolution of the internal-external abstract
functionality is the same to the class functionality.

There are techniques to make changes to the abstract
functionality non-breaking. We demonstrate the techniques
using two changes as an example: adding and removing a
method. These operations can be considered more broadly.
Changing a method can be considered as removing an old
method and adding a new method.

B. Adding a method
Adding a method with an implementation is non-breaking.
Adding an abstract method is breaking and requires a default
implementation for the abstract class (listing 2) or interface
(listing 3) [27].
Listing 2. Abstract class with added method
1 public abstract class AbstractClass {
2 public abstract void method();
3
4 public void newMethod() {
5 System.out.println("AbstractClass is working v2");
6 }
7 }
↳
Listing 3. Interface with added method
1 public interface Interface {
2 void method();
3
4 default void newMethod() {
5 System.out.println("Interface is working v2");
6 }
7 }
↳

The default implementation may be to throw an
UnsupportedOperationException [25, 27, 28, 29] (listing 4
[25]).

66

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

Listing 4. UnsupportedOperationException thrown as default

implementation
1 @Override
2 public V setValue(V value) {
3 throw new UnsupportedOperationException();
4 }
↳

This exception alerts the programmer that a method is
implemented by default in an abstract class or interface, but
not in the client class.

The default implementation of throwing
UnsupportedOperationException is criticized in [18] for
requiring the addition of a try – catch statement to catch the
exception, which increases the program length. The default
implementation of doing nothing creates backward
incompatibility when the implementation is called [4].

Another way to add a method that doesn't require a
default method implementation is to create a subinterface
with a new method [30] (listing 5).
Listing 5. An interface inheriting superinterface methods and

adding a new method
1 public interface InterfaceWithNewMethod extends Interface {
2 void newMethod2();
3 }
↳

C. Removing a method
Let's say there is Interface with removingMethod that needs
to be removed (listing 6). Interface is not a subinterface.
Listing 6. Original interface with a deleted method
1 public interface Interface {
2 void method();
3 void removingMethod();
4 }
↳

Let's introduce SuperInterface and move all the remaining
methods to it (listing 7, lines 1-3). Let's make Interface as a
subinterface of SuperInterface (lines 5-7).
Listing 7. Interfaces after method removal
1 public interface SuperInterface {
2 void method();
3 }
4
5 public interface Interface extends SuperInterface {
6 void removingMethod();
7 }
↳

New versions of classes must implement SuperInterface,
not Interface.

D. Interface-segregation principle
When changing interfaces, it is worth remembering the
interface-segregation principle [31]:

Clients should not be forced to depend on methods that
they don't use.

XIV. FUNCTIONALITY AND INHERITANCE
Inheritance can be divided into two types depending on the
impact on the functionality of the subclass [5]:
(1) Functionally extendible (“inheritance for the sake of

functionality”), when a subclass gets the functionality
of a superclass and extends it with its own. Examples of
this type of inheritance are custom exception subclasses

of the Exception class or subclasses of the JFrame class
of the Swing graphics library.

(2) Functionally overridable (“inheritance for the sake of
polymorphism”), when the methods of the superclass
are overridable in the subclass, and the functionality in
the subclass doesn't change. Examples of this type of
inheritance are input-output stream classes. These
classes have the same functionality, but allow reading
and writing data from different sources: files, strings,
arrays. The same functionality allows you to replace
reading from a file with reading from a string. The
overridable functionality is defined by an abstract
functionality.

Subclasses can be created for different purposes. In the
case of functionally extendible inheritance, subclasses are
created to access the functionality of the class hierarchy and
add new functions to it, and in the case of functionally
overridable inheritance, they are created to override the
functionality of the superclass to solve problems with new
specifics.

In both types of inheritance, subclasses must be more
specialized (less general) than the superclass.

Design and document for inheritance or else prohibit it
[25].

XV. PATTERN STYLE “ABSTRACTION RAISING”

A. How to improve the stability of the class functionality?
Developers must make headers of the methods stable, since
changing them almost always involves binary compatibility
[19]. As a result of studying the class functionality and the
related concepts, it becomes necessary to find an approach
to improve the stability of the functionality.

B. Concept
A pattern style is a concept intended to be used further in
design patterns.

We introduce the “Abstraction Raising” pattern style.
Only what is hidden can be changed without risk [32]. The
pattern style consists in using more abstract items (table 2;
based on [18, 25, 33, 34]) to improve the stability of the
class functionality. We define a factory as a class with a
method that creates an object of another class. We define a
factory method as a static method of a class that creates an
object of the same class (static factory method in [25]).

TABLE 2. ITEMS AND THEIR MORE ABSTRACT ONES
Item More Abstract Item

byte, short, int, long,
float, double, char

Class (not a wrapper class:
Byte, Short, etc)

boolean Enum
Field Method
Class Interface or abstract class
Constructor Factory or factory method

Using more abstract items allows the following:

• hide specific elements from client classes behind their
abstractions for different purposes (prohibition of
creation of class objects, substitution of objects of some
classes with objects of other classes, etc.);

• make breaking changes non-breaking.
Whether or not to raise abstraction depends on the

67

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

situation in which it is used.

Improving stability in the pattern style is achieved by
complicating of the program.

We demonstrate how to improve the stability of the
functionality via the example of a breaking change
converted into non-breaking one.

C. Non-breaking change of return type
Let the method return a value of type int. When designing
the method of OnlyClass (listing 8), a more abstract return
type was used – the MethodResult class (listing 9).
Listing 8. OnlyClass class with method version 1
1 public final class OnlyClass {
2 public MethodResult method() {
3 System.out.println("OnlyClass is working v1");
4 int originalResult = 1;
5 MethodResult result = new MethodResult(originalResult);
6 return result;
7 }
8 }
↳
Listing 9. MethodResult class version 1
1 public final class MethodResult {
2 private int integer;
3
4 MethodResult(int integer) {
5 this.integer = integer;
6 }
7
8 public int getInt() {
9 return this.integer;
10 }
11 }
↳

The client class has the form (listing 10).
Listing 10. Client class
1 public class ClientRunner {
2 public static void main(String[] args) {
3 OnlyClass onlyClass = new OnlyClass();
4 MethodResult result = onlyClass.method();
5 System.out.printf("Integer result: %d\n", result.getInt());
6 }
7 }
↳

In version 2 of method, it turned out that the return type
must be double. In MethodResult, the type and field name
were changed (listing 11, line 2), getDouble has been added
(lines 8-10), in getInt the return of the integer type field
value has been replaced by rounding the value of a field
with the double type (line 13).

Listing 11. MethodResult class version 2
1 public final class MethodResult {
2 private double doubleValue;
3
4 MethodResult(double doubleValue) {
5 this.doubleValue = doubleValue;
6 }
7
8 public int getInt() {
9 return (int) Math.round(this.doubleValue);
10 }
11
12 public double getDouble() {
13 return this.doubleValue;
14 }
15 }
↳

OnlyClass was changed as well (listing 12).
Listing 12. OnlyClass class version 2
1 public final class OnlyClass {
2 public MethodResult method() {
3 System.out.println("OnlyClass is working v2");
4 double originalResult = 1.2;
5 MethodResult result = new MethodResult(originalResult);
6 return result;
7 }
8 }
↳

However, the client class (listing 10) remained
unchanged, since method returned an object of the modified
MethodResult class, not the value of the primitive type.

This change will be source-compatible. The change will
be functional-compatible if the rounding in method of the
version 2 is equivalent to the integer value produced by
method of the version 1.

D. Non-breaking change to formal parameter list
A non-breaking change to the formal parameter list is to use
the MethodParameters data class with the method
parameters. Instead of parameters, an object of
MethodParameters is passed to the method. This allows
changing the formal parameter list without modifying the
method header. The example classes are bulky. You can see
the example classes and run the program, as well as the
classes of other examples, by downloading the program
project from the website http://prutzkow.com [35].

XVI. CLASS FUNCTIONALITY
AND RELATED CONCEPTS IN PRACTICE

A. Preliminary note
We survey statistic studies characterizing the relationships
of the API, and therefore the functionality, with the related
concepts.

B. API, changes, deprecated API
McDonnell T. et al. [36] explored the API versions 3–15
(2009–2011) of the Android operating system:
• in every API version, on average 149 classes and 158

methods were changed, 37 methods were added, 2
methods were removed, 179 fields were changed, 32
fields were added, and fields were not removed;

• on average, 28% of client methods call deprecated API
methods; 50% of API method calls remain unchanged

68

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

for 16 or more months after these methods were
declared deprecated.

C. Deprecated API
Zhou J. and Walker R.J. [37] examined comments of
deprecated APIs in 26 Java projects:
• only 55% of comments had an indication of the API,

which is a replacement for the deprecated API;
• on average 9.1% of comments contained reasons to

make the API deprecated;
• in 12 projects, the API was initially declared as

deprecated, and in the next versions this declaration was
removed;

• in 3 projects the API was removed and then restored as
deprecated (remove – resurrect – deprecate);

• in 15.4% of projects, the deprecated API was
completely removed in the following versions, in 30.8%
it was partially removed, in 53.8% it was not removed;

• 74.4% of removed deprecated APIs were removed
during a major version release.

D. API, breaking and non-breaking changes
Xavier L. et al. [38] studied changes in 317 libraries.

Changes were classified into breaking and non-breaking, as
well as types, fields, and methods (table 3). The most
frequently used classes and interfaces were identified (table
4).

TABLE 3. SHARE OF TOTAL CHANGES AND BREAKING CHANGES
BY CLASS ELEMENT

Element Total, % Breaking changes, %
Types 12.3 18.9
Fields 13.4 37.4
Methods 74.3 27.8
All 100 28.0

TABLE 4. THE MOST FREQUENTLY USED CLASSES
AND INTERFACES OF THE JAVA PROGRAMMING LANGUAGE

Class Number of client program classes
java.util.ArrayList 143 454
java.io.IOException 136 058
java.util.List 134 053
java.util.HashMap 94 220
java.io.File 88 703

Brito A. et al. [22] analyzed changes in two graph display

and image loading libraries and presented the following
statistics:
• methods are changed more often than fields and types

during breaking and non-breaking changes;
• the most common breaking changes are method deletion

(44%) and non-breaking changes are method addition
(67%).

E. API, breaking changes, version
Ochoa L. et al. [9] analyzed pairs of library versions with
breaking changes in two sets (tables 5–6) and compared the
obtained results with the results from [39] (table 7).

TABLE 5. SHARES OF TOTAL AND BREAKING CHANGES
IN LIBRARIES BY VERSION TYPE (SET 1)

Version Share of
changes, % Share of breaking changes, %

Major 2.4 72.7
Minor 23.2 50.1
Patch 74.4 24.2

 100.0
 TABLE 6. SHARES OF TOTAL AND BREAKING CHANGES

IN LIBRARIES BY VERSION TYPE (SET 2)

Version Share of
changes, % Share of breaking changes, %

Major 2.4 61.8
Minor 23.1 37.9
Patch 74.5 14.7

 100.0
 TABLE 7. SHARES OF TOTAL AND BREAKING CHANGES

BY VERSION TYPE [39]

Version Share of
changes, % Share of breaking changes, %

Major 14.8 35.9
Minor 37.2 35.7
Patch 48.1 23.8

 100.0

Mostafa S. et al. [2] tested 68 pairs of versions of 15
libraries. They found 76.5% of pairs contained behavioral
backward incompatibilities.

Dietrich J. et al. [19] found that 75% of version pairs of
Java programs had breaking changes. Only 2 out of 109
programs had a stable API.

F. API, changes, IAPI
Hora A., Robbes R. et al. [40] examined the environment of
a programming language with more than 3 500 client
programs and identified 118 API changes:
• 50% of methods added with keeping of the old method;

50% of methods added with removal of the old method;
• 8% of changes are related to the IAPI;
• 53% of changes caused changes in client programs;
• propagation time is shorter from the 2nd quartile for

adding a method while removing an old method (a
breaking change) than for adding a method while
keeping an old method (a non-breaking change) (table
8).

TABLE 8. DISTRIBUTION OF TIME FOR MAKING CHANGES
TO CLIENT PROGRAMS, DAYS

 1st
quartile

2nd
quartile

3rd
quartile

4th
quartile

Adding a method
with deleting the
old method

16 18 201 211

Adding a method
while keeping the
old method

7.5 121 334.5 662

Hora A., Valente M.T. et al. [7] studied IAPI in 5 Java

programs and concluded that:
• 23.5% of client programs depend on the IAPI of

Eclipse;
• 7% of IAPI in new versions became API.

Mastrangelo L. et al. [41] found that 25% of artifacts used
an undocumented Java IAPI class, which can violate the

69

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

security of program execution.

Dietrich J. et al. [19] as a result of their study recommend
the following:
• developers should use a naming convention to

distinguish between public and private packages; this
will allow to identify calls to private packages
automatically;

• you should not rely on non-public JRE packages (sun.*
etc.), as these packages may not be available on some
platforms, such as Android.

G. Automated API creation
Reimann L. and Kniesel-Wünsche G. [42] introduced
adaptering. Adaptering consists of using the “Adapter”
pattern [34] to create an API of a new library. The new
library calls functions of the old library. The authors
identified API changes that can be made automatically and
developed a program for manual changes.

XVII. CONCLUSION
In our study, we investigated the relationships between the
class functionality and its evolution, changes, compatibility,
API, inheritance, version, and stability. We verified the
existence of these relationships in practice with statistical
data. Our research will be useful:
• scientists when planning their experiments in the field

of class and API design;
• developers when designing the functionality of a class,

taking into account its relationships with other concepts.
The introduced pattern style makes the functionality of

the class more stable, and therefore the API in which this
class is used. However, using the style complicates the
program.

Scientific articles and papers on the API evolution from
1994 to 2018 were surveyed in [43].

REFERENCES
[1] Santana de Almeida E. Software Reuse and Product Line

Engineering. In Handbook of Software Engineering, 2019:321–348.
DOI: 10.1007/978-3-030-00262-6_8.

[2] Mostafa S. et al. Experience Paper: A Study on Behavioral Backward
Incompatibilities of Java Software Libraries. In 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2017:215–225. DOI: 10.1145/3092703.3092721.

[3] Finlayson M.A. Java Libraries for Accessing the Princeton Wordnet:
Comparison and Evaluation. In the 7th International Global WordNet
Conference (GWC), 2014:78–85.

[4] Lelek T., Skeet J. Software Mistakes and Tradeoffs. How to Make
Good Programming Decisions. Manning, 2022.

[5] Prutzkow A.V. Tonkosti Programmirovanija v Primerakh
[Programming Subtleties in Examples]. Kurs, 2022. [in Rus].

[6] Hersh R. What is Mathematics, Really? Oxford University Press,
1997.

[7] Hora A., Valente M.T. et al. When Should Internal Interfaces Be
Promoted to Public? In 24th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE),
2016:280–291.

[8] Prutzkow A.V. Printsipy Razrabotki Programmnyh Interfejsov v
Industrialnyh Informatsionno-Izmeritelnyh i Upravljajuschih
Sistemah [Principles for Development of Program Interfaces in
Industrial Information, Measuring, and Controlling Systems]. In
Kontrol'. Diagnostika, 2021, 24(10):44–47. [in Rus].
DOI: 10.14489/td.2021.10.pp.044-047.

[9] Ochoa L. et al. Breaking Bad? Semantic Versioning and Impact of
Breaking Changes in Maven Central: An External and Differentiated
Replication Study. In Empirical Software Engineering, 2022,
27(3):61.

[10] De B. API Management: An Architect’s Guide to Developing and
Managing APIs for Your Organization, 2nd ed. Apress, 2023.
DOI: 10.1007/979-8-8688-0054-2.

[11] Geewax J.J. API Design Patterns. Manning, 2021.
[12] Medjaoui M. et al. Continuous API Management, 2nd ed. O’Reilly,

2021.
[13] Weir L. et al. Enterprise API Management. Packt, 2019.
[14] Zimmermann O. et al. Patterns for API Design. Addison-Wesley,

2023.
[15] Kim M. et al. Software Evolution. In Handbook of Software

Engineering, 2019:223–284. DOI: 10.1007/978-3-030-00262-6_6.
[16] Grubb P., Takang A.A. Software Maintenance: Concepts and

Practice. World Scientific, 2003.
[17] Chapin N. et al. Types of Software Evolution and Software

Maintenance. In Journal of Software Maintenance and Evolution:
Research and Practice, 2001, 13(1):3–30.

[18] Tulach J. Practical API Design: Confessions of a Java Framework
Architect. Apress, 2008.

[19] Dietrich J. et al. Broken Promises: An Empirical Study into Evolution
Problems in Java Programs Caused by Library Upgrades. In Software
Evolution Week – IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR–WCRE), 2014,
1:64–73.

[20] Stocker M., Zimmermann O. From Code Refactoring to API
Refactoring: Agile Service Design and Evolution. In SummerSOC
2021, CCIS 1429, 2021:174–193. DOI: 10.1007/978-3-030-87568-
8_11.

[21] Granli W. et al. The Driving Forces of API Evolution. In IWPSE,
2015. DOI: 10.1145/2804360.2804364.

[22] Brito A. et al. APIDiff: Detecting API Breaking Changes. In IEEE
25th International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2018:507–511.

[23] Dig D., Johnson R.E. How Do APIs Evolve? A Story of Refactoring.
In Journal of Software Maintenance and Evolution, 2006, 18(2):83–
107.

[24] Sawant A.A. et al. Why are Features Deprecated? An Investigation
into the Motivation behind Deprecation. In IEEE International
Conference on Software Maintenance and Evolution (ICSME),
2018:13–24. DOI: 10.1109/ICSME.2018.00011.

[25] Bloch J. Effective Java, 3rd ed. Addison-Wesley, 2018.
[26] Hou D., Yao X. Exploring the Intent behind API Evolution: A Case

Study. In 18th Working Conference on Reverse Engineering,
2011:131–140.

[27] Schildt H. Java. The Complete Reference, 9th ed. McGraw-Hill,
2014.

[28] Blinov I., Romanchik V.S. Java from. Chetyre Chetverti, 2020. [in
Rus].

[29] Sharan K. Beginning Java 9 Fundamentals: Arrays, Objects, Modules,
JShell, and Regular Expressions. Apress, 2017. DOI: 10.1007/978-1-
4842-2902-6.

[30] Spoon A. Anti-Deprecation: Towards Complete Static Checking for
API Evolution. In 2nd International Workshop on Library-Centric
Software Design (LCSD), 2006:65–74.

[31] Martin R. Agile Software Development. Principles, Patterns, and
Practices. Prentice Hall, 2003.

[32] Endres A., Rombach D. A Handbook of Software and Systems
Engineering. Empirical Observations, Laws, and Theories. Pearson,
2003.

[33] Parnas D.L. On Criteria to Be Used in Decomposing Systems into
Modules. In Communications of the ACM, 1972, 15(12):1053–1058.

[34] Gamma E. et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[35] Prutzkow A.V. Internet-Resurs dlja Razmeschenija Rezultatov
Nauchnoj i Obrazovatelnoj Dejatelnosti [Internet-Resource for
Scientific and Educational Work Result Publishing]. In Vestnik of the
RSREU, 2018, 63:84–89. [in Rus]. DOI: 10.21667/1995-4565-2018-
63-1-84-89.

[36] McDonnell T. et al. An Empirical Study of API Stability and
Adoption in the Android Ecosystem. In IEEE International
Conference on Software Maintenance, 2013:70–79.

[37] Zhou J., Walker R.J. API Deprecation: A Retrospective Analysis and
Detection Method for Code Examples on the Web. In 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2016:266–277.

[38] Xavier L. et al. Historical and Impact Analysis of API Breaking
Changes: A Large-Scale Study. In IEEE 24th International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2017:138–147.

70

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 11, 2024

[39] Raemaekers S. et al. Semantic Versioning and Impact of Breaking

Changes in the Maven Repository. In Journal of Systems and
Software, 2017, 129:140–158. DOI: 10.1016/j.jss.2016.04.008.

[40] Hora A., Robbes R. et al. How do Developers React to API
Evolution? A Large-Scale Empirical Study. In Software Quality
Journal, 2016. DOI: 10.1007/s11219-016-9344-4.

[41] Mastrangelo L. et al. Use at Your Own Risk: the Java Unsafe API in
the Wild. In International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2015.

[42] Reimann L., Kniesel-Wünsche G. Adaptoring: Adapter Generation to
Provide an Alternative API for a Library. In International Conference
on Software Analysis, Evolution, and Reengineering (SANER), 2024.

[43] Lamothe M. et al. A Systematic Review of API Evolution Literature.
2020. DOI: 10.1145/1122445.1122456.

71

	I. Introduction
	II. Motivation, the purpose of the study, and the article organization
	III. Concept Map
	IV. What is a class functionality
	V. Abstract functionality
	VI. Functionality is not a functional
	VII. Interface, API, and IAPI
	VIII. Another definition of the concept of API
	IX. Software changes
	X. Backward and forward compatibility
	XI. Version, backward and forward compatibility
	XII. Evolution of functionality
	A. Definition, reasons and basic approach
	B. Breaking and non-breaking changes
	C. Breaking changes and deprecated methods
	D. When are breaking changes good?

	XIII. Evolution of abstract functionality
	A. Differences from the functionality evolution, techniques for non-breaking changes
	B. Adding a method
	C. Removing a method
	D. Interface-segregation principle

	XIV. Functionality and inheritance
	XV. Pattern style “Abstraction raising”
	A. How to improve the stability of the class functionality?
	B. Concept
	C. Non-breaking change of return type
	D. Non-breaking change to formal parameter list

	XVI. Class functionality and related concepts in practice
	A. Preliminary note
	B. API, changes, deprecated API
	C. Deprecated API
	D. API, breaking and non-breaking changes
	E. API, breaking changes, version
	F. API, changes, IAPI
	G. Automated API creation

	XVII. Conclusion
	References

