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Abstract—Nowadays, latency-critical, high-performance 

applications are parallelized even on power-constrained client 
systems to improve performance. However, an important 
scenario of fine-grained tasking on simultaneous 
multithreading CPU cores in such systems has not been well 
researched in previous works. Hence, in this paper, we conduct 
performance analysis of state-of-the-art shared-memory 
parallel programming frameworks on simultaneous 
multithreading cores using real-world fine-grained application 
kernels. We introduce a specialized and simple software-only 
parallel programming framework called Relic to enable 
extremely fine-grained tasking on simultaneous multithreading 
cores. Using Relic framework, we increase performance 
speedups over serial implementations of benchmark kernels by 
19.1% compared to LLVM OpenMP, by 31.0% compared to 
GNU OpenMP, by 20.2% compared to Intel OpenMP, by 
33.2% compared to X-OpenMP, by 30.1% compared to 
oneTBB, by 23.0% compared to Taskflow, and by 21.4% 
compared to OpenCilk. 
 

Keywords—parallel programming, fine-grained task 
parallelism, simultaneous multithreading (SMT), OpenMP 
 

I. INTRODUCTION 
With an increasing amount of data to process and usage 

scenarios becoming more complex, modern real-world high-
performance, latency-critical applications and services tend 
to extract more parallelism to improve performance. This 
trend, however, is not limited to server and high-
performance computing (HPC) applications. Client devices 
nowadays tend to have tens of CPU cores that have enough 
processing power to run 3D graphics applications, rendering 
pipelines, and complex on-device analysis and inference 
engines. However, there are several differences between 
parallel computing in client and HPC domains. 

First, power constraints on client devices are usually 
stricter than on HPC systems. In many cases, it is possible to 
simultaneously run tasks only on a few of available physical 
CPU cores in a client system without causing the device to 
overheat. CPU cores that are not utilized at the moment are 
put into an idle state reducing power consumption. 

Second, there is a difference in the nature of fine-grained 
parallel tasks between client and HPC domains. In HPC 
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domain, computations are usually divided into a big number 
of parallel tasks to achieve the highest performance. The 
spawned tasks are distributed across hundreds and thousands 
of CPU cores. Processing of large input data or modeling of 
complex multi-component systems tend to be the primary 
reasons for such large-scale computations in HPC domain. 
In client systems, a granularity of input user data is usually 
much smaller. Standard algorithms and operations on data 
structures, that are performed on a large scale in HPC 
systems, are applied to smaller inputs in client applications. 
With smaller data inputs, the same granularity of tasks could 
be observed by dividing the work into 2-10 independent 
parts rather than thousands. 

Because of the stricter power constraints on client 
devices, an application of simultaneous multithreading 
(SMT) technology could help to increase a level of achieved 
parallelization. Simultaneous multithreading technology [1] 
allows to simultaneously execute instructions from multiple 
threads on the same physical core. Since a single thread 
might not fully utilize all the available resources of a CPU 
core due to stalls caused by events such as branch 
mispredictions and cache misses, running additional threads 
could help to improve an overall utilization of a CPU core. 
Most of the available commercial general-purpose 
processors supporting SMT implement it with 2 logical 
threads per 1 physical core. For instance, on x86-64 
processors, Intel implements SMT technology under the 
name of Hyper-Threading (HT) [2], [3] supporting two 
logical threads per core. 

The reason why SMT technology could help to parallelize 
applications on power-constrained client systems is that 
activating another physical core and scheduling a task on it 
consumes more power than running the task in a different 
logical thread on the same physical core [4]. Obviously, in 
most cases, using another physical core to run a parallel task 
is more performant [5], [6]. However, with a constrained 
power budget, it might not be possible leaving the utilization 
of SMT technology the only option to boost performance 
through parallelization. 

Moreover, using the same physical core to run a task 
through SMT could help to support parallel tasks of finer 
granularity [7], [8]. Communication between threads is 
usually done through shared memory with mechanisms such 
as atomic operations providing synchronization. Hence, 
passing data through lower private levels of cache hierarchy 
in the same physical CPU core could reduce an overhead for 
scheduling parallel tasks [9]. Furthermore, there have been 
many works introducing and exploring hardware 
optimizations to reduce task scheduling and synchronization 
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overheads on SMT cores [8], [10], [11].     

Thus, in this paper, we focus on fine-grained tasking 
targeting power-constrained simultaneous multithreading 
CPU cores in client systems. In real-world applications, 
parallel computing is usually enabled through parallel 
programming frameworks that provide a programming 
interface and a runtime.  

Therefore, we make the following main contributions: 
1) We conduct performance analysis of fine-grained 

tasking in state-of-the-art shared-memory parallel 
programming frameworks on CPU simultaneous 
multithreading cores using real-world application 
kernels. 

2) We introduce Relic: a simple specialized software-only 
task-parallel programming framework targeted towards 
enabling extremely fine-grained task parallelism on 
SMT cores. We show that through specialization, 
restrictions, and simplicity in design, we could achieve 
significant performance speedup compared to modern 
state-of-the-art parallel programming frameworks. 

II. RELATED WORK 
There have been many parallel programming frameworks 
proposed and developed throughout the years.  

OpenMP [12], [13] is a standard API for shared-memory 
parallel programming in C/C++ and Fortran. State-of-the-art 
implementations of OpenMP include LLVM OpenMP [14], 
GNU OpenMP [15], and Intel OpenMP. X-OpenMP [16] 
and BOLT OpenMP [17] are more recent implementations 
of OpenMP introducing several optimizations to increase 
performance. OpenMP API allows limiting a number of 
worker threads and setting their thread affinity, hence, it 
could be used as a parallel framework to enable fine-grained 
tasking on SMT cores. 

Many native parallel frameworks exist for C/C++ 
programming languages. The list includes Intel oneAPI 
Thread Building Blocks (oneTBB) [18], Taskflow [19], and 
Fastflow [20] frameworks, in which it is possible to enable 
fine-grained tasking on simultaneous multithreading cores. 

To enable parallel programming, many solutions 
introduce new constructs into programming languages and 
require modifications to compilers. For example, OpenCilk 
[21] enables task-parallel programming through C/C++ 
language extensions. OmpSs-2 [22] introduces OpenMP-like 
code annotations and provides a compiler based on LLVM. 
Charm++ [23] adds additional functionality on top of C++ 
programming language. However, since large-scale client 
systems and applications tend to consist of many libraries 
and modules, using non-standard language extensions and 
runtimes might be challenging in real-world scenarios. 

Previously, many researchers have conducted comparative 
performance analyses of shared-memory parallel programing 
frameworks, including analysis on fine-grained tasks [16], 
[19], [24]–[33]. Furthermore, there have been many works 
analyzing performance and power efficiency of parallel 
computing with simultaneous multithreading [5], [6], [34]–
[43]. However, the scope of work on fine-grained tasking 
specifically on SMT cores is very limited. Most of the 
related studies either focus on coarse-grained or medium-

grained parallelism on SMT cores or fine-grained tasks that 
are spawned in large numbers from parallelizing heavy 
workloads, and thus are also scheduled on SMT cores. 
Moreover, to the best of our knowledge, there have not been 
works that conduct performance analysis of multiple state-
of-the-art parallel programming frameworks on SMT cores 
using fine-grained tasks that come from workloads with 
small input datasets. 

In [34], [40], [41], and [43], using NAS Parallel 
Benchmarks [44], performance evaluations are done for 
parallel computing on x86 CPU cores with hyper-threading. 
However, the analysis is limited to OpenMP and coarse-
grained application kernels. In [39], performance analysis of 
tasking on SMT cores is also conducted based on NAS 
Parallel Benchmarks with large inputs, however, explicit 
threading is used instead of OpenMP. Performance and 
power efficiency of x86-64 Intel processors with hyper-
threading is explored in [38] using SPEC OMP [45] and 
SPEC CPU2006 [46] benchmarks with standard reference 
inputs. Acceleration of applications from different domains 
using SMT technology is studied in [5], [6], [35]–[37], and 
[42], but the focus is also on the coarse-grained parallelism.  

Modern state-of-the-art task-parallel frameworks such as 
OpenMP, Intel oneAPI Thread Building Blocks, OpenCilk, 
and Taskflow do not provide specialized constructs or 
interfaces that could be used to reduce task handling 
overheads and enable extremely fine-grained tasking 
specifically on simultaneous multithreading cores. However, 
mechanisms that could be utilized to reduce task handling 
overheads on SMT cores have been studied in previous 
works. 

SMT technology does not only allow to speedup 
applications through parallelization but also to use other 
logical threads of a physical core as helper threads [47]. 
Helper threads could be used to speculatively prefetch data 
for the main thread or precompute conditions for hard-to-
predict branches [39], [47]. A lot of the techniques reducing 
task handling and synchronization overheads have been 
discussed primarily in the context of the helper thread 
scenario. The techniques that enable extremely fine-grained 
tasking can be either hardware-accelerated [8], [10], [11], 
[48]–[50] or software-only [16], [39], [51], [52]. 

Some of the software-only techniques are not limited to 
the usage on SMT cores and have already been utilized in 
state-of-the-art task-parallel frameworks, such as X-
OpenMP, to reduce task handling overheads [16]. For 
example, in [16] and [39], different implementations of 
synchronization primitives and worker thread suspension 
mechanisms are studied to enable fine-grained tasking.    

Furthermore, several works introduce novel hardware-
accelerated general parallel computing models and 
microarchitectures to enable extremely fine-grained tasking 
and speculative parallelism beyond simultaneous 
multithreading cores [53]–[55]. 

Despite the large scope of work on hardware-accelerated 
parallel computing models and task handling optimizations, 
almost none of them are supported in current commercially 
available processors with simultaneous multithreading [39]. 
To enable fine-grained tasking in applications, 
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aforementioned software-only parallel programming 
frameworks are used in both client devices and HPC 
systems. Even though, several software-only mechanisms 
that could help to enable extremely fine-grained tasking 
specifically on SMT cores had been previously researched, 
to the best of knowledge, there were not any studies 
conducted highlighting achievable performance speedups 
over popular existing software-only task-parallel 
frameworks. Hence, in this paper, we introduce a specialized 
task-parallel framework utilizing software-only techniques to 
enable extremely fine-grained parallelism on SMT cores and 
demonstrate significant performance speedups over modern 
state-of-the-art general parallel programming frameworks.  

III. METHODOLOGY 
For all performance evaluations, we use a computer with 
Intel Core i7-8700 @ 3.20 GHz x86-64 processor featuring 
6 physical CPU cores with 2 logical threads per each core. 
The system is Ubuntu 22.04 with Linux 5.15 kernel and 
glibc 2.35. 

We evaluate four state-of-the-art OpenMP 
implementations: LLVM OpenMP from LLVM 18.1.2, 
GNU OpenMP from GCC 13.2, Intel OpenMP from Intel 
oneAPI Base Toolkit 2024.0, and X-OpenMP. We ported 
the original X-OpenMP implementation from LLVM 11 to 
18.1.2. We also evaluate Intel oneAPI Thread Building 
Blocks (oneTBB) from the 2021.11 release, OpenCilk from 
the 2.1 release, and Taskflow v3.7.0 parallel programming 
system. 

For OpenMP implementations, we use #pragma task and 
#pragma taskwait directives to submit a task and wait for it 
to finish. We use the task_group class and its methods with 
oneTBB. In Taskflow parallel programing system, we rely 
on asynchronous tasking. For OpenCilk, we use cilk_spawn 
and cilk_sync standard calls. 

Benchmarks and investigated parallel runtimes are 
compiled with LLVM 18.1.2 Clang and -O3 optimization 
options. However, we use GCC 13.2 compiler to evaluate 
GNU OpenMP implementation since it is not compatible 
with LLVM. Moreover, OpenCilk 2.1 is based on LLVM 
16.0.6. We use LLVM’s libc++ standard library 
implementation from LLVM 18.1.2 as the default for all 
cases. 

In order to conduct performance analysis on SMT core, 
we limit a number of worker threads to 2 for each runtime 
and bind them to the same physical CPU core.   

IV. BENCHMARKS 
We focus on evaluating performance of parallel runtimes 
and frameworks enabling fine-grained tasking on SMT 
cores. Many previous studies have showed that performance 
gains from SMT technology greatly depend on applications 
[38], [39], [56]. However, since, in general, parallel 
memory-intensive tasks with complex memory access 
patterns are more likely to benefit from running in logical 
threads of a SMT core [39], we primarily use real-world 
fine-grained memory-intensive application kernels for 
performance evaluation. 

A. Graph algorithms 
Graph algorithms are standard building blocks used in many 
client applications. We choose betweenness centrality (BC), 
breadth-first search (BFS), connected components (CC), 
page ranking (PR), single-source shortest paths (SSSP), and 
triangle counting (TC) graph kernels for performance 
evaluation. We take single-threaded high-performance 
implementations of these graph kernels from GAP 
Benchmark Suite [57]. For the connected components graph 
kernel, we use the implementation based on Shiloach-
Vishkin algorithm [58], since it shows better performance on 
fine-grained input graphs. 

In order to evaluate performance on SMT cores, we run 
two instances of the same graph kernel in parallel, binding 
them to different logical threads of a physical core. Each 
instance operates on the same input graph. Basically, we 
generate two identical graphs and pass them to graph kernel 
instances. The tasks are scheduled using a parallel runtime 
under investigation. In the serial mode, we run two instances 
of a graph kernel in a single thread. 

We use a generated Kronecker graph with 32 nodes and 
157 undirected edges for a degree of 4 as an input for all 
graph kernels. With this generated graph used as an input, a 
single task instance takes 1.1 microseconds for the BC graph 
kernel, 0.5 microseconds for the BFS kernel, and 0.4 
microseconds for the CC kernel. For PR, SSSP, and TC 
graph kernels, task instances take 4.3 microseconds, 6.4 
microseconds, and 1.3 microseconds to compute, 
respectively. Since we use fine-grained tasks, we repeat the 
experiments for 105 iterations and average the results to 
improve stability of performance measurements.  

B. JSON parsing 
JavaScript Object Notation (JSON) is a standard format that 
is frequently used to transmit data between client 
applications and web servers. Hence, parsing of received 
JSON files in parallel could improve performance of client 
applications. 

To conduct performance evaluation for JSON parsing 
scenario, we use RapidJSON library [59]. RapidJSON is a 
fast C++ library for parsing and generating JSON files. As 
an input file, we use a small sample JSON file that describes 
a widget and is available from [60]. We run two tasks both 
parsing this JSON file loaded into a memory buffer. Each 
task has its own copy of the memory buffer with the loaded 
file content. With the selected JSON file as an input, a single 
JSON parsing task takes 1.1 microseconds to complete in 
our testing environment. We bind each task to different 
logical threads on the same SMT physical core. However, in 
the serial mode, we run these two JSON parsing tasks in the 
same thread. We run all the experiments for 105 iterations 
and average the results. 

V. PERFORMANCE ANALYSIS OF STATE-OF-THE-ART 
PROGRAMMING FRAMEWORKS 

We conduct performance analysis of the state-of-the-art 
task-parallel frameworks using aforementioned real-world 
fine-grained application kernels consisting of graph 
algorithms and JSON parsing with small inputs. In Fig. 1, 

146 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024 
 
 
performance speedups over serial implementations are 

presented for each of the investigated parallel frameworks. 
LLVM OpenMP shows the best performance speedup not 

only among different OpenMP implementations, but among 
all of the investigated frameworks. Using the geometric 
mean to average the results across benchmarks and taking 
into account performance degradations on individual 
application kernels, LLVM OpenMP shows 13.9% 
performance speedup over serial implementations, while 
Intel OpenMP, Taskflow, and OpenCilk show 11.3%, 
11.8%, and 12.6% speedups, respectively. However, 
averaging across all the application kernels, X-OpenMP, 
GNU OpenMP, and oneTBB frameworks show 6.7%, 
17.7%, and 1.9% performance degradations, respectively. 

All the frameworks achieve performance speedups on the 
PR and SSSP benchmark kernels, the ones with the highest 
granularities. Moreover, on the triangle counting graph 
kernel, GNU OpenMP is the only one that results in 
performance degradation. However, only Taskflow and 
OpenCilk are able to achieve performance speedups on the 
BC graph kernel, while none of the parallel frameworks 
could successfully parallelize the benchmark using breath-
first search algorithm. Furthermore, among the investigated 
parallel frameworks, only LLVM-based OpenMP 
implementations show increase in performance on the 
connected components graph kernel. JSON parsing 
benchmark is successfully parallelized with all the 
investigated OpenMP implementations and OpenCilk 
parallel framework. 

VI. RELIC: A SPECIALIZED FRAMEWORK FOR FINE-GRAINED 
TASKING ON SMT CORES 

We introduce Relic, a specialized framework for C and C++ 
programming languages to enable extremely fine-grained 
task parallelism on SMT cores. 

A. Task scheduling 

State-of-the-art shared-memory parallel programming 
frameworks such as oneTBB, OpenCilk, and OpenMP 
implementations tend to use advanced work-stealing 
algorithms to efficiently distribute tasks across tens and 
hundreds of CPU cores. However, a parallel programming 
framework that is specialized to the usage on a SMT core 
needs to distribute tasks only among available logical 
threads. In most cases, there are only two logical threads on 
a SMT core. Hence, in this paper, we consider only the case 
with 2 running logical threads. 
 To remove the necessity to implement any complex 
scheduling strategies and reduce a task scheduling overhead, 
we assign special roles to each of the two threads. One of the 
threads is made the main thread, while the other – the 
assistant thread. The main thread is one of the primary 
application threads created by an application itself or by a 
runtime of a general-purpose parallel programming 
framework. The assistant thread is created and managed by 
Relic task-parallel framework. The main thread is a producer 
and the assistant thread is a consumer, meaning that only the 
main thread can submit tasks in Relic, while the assistant 
thread is the only one allowed to run them. The assistant 
thread cannot submit tasks, hence, creating tasks recursively 
is not supported in Relic.  
 Thus, in Relic, we implement the single-producer single-
consumer pattern. This pattern and its utilization to reduce 
task scheduling overheads in parallel runtimes have been 
well studied in previous works, for example, in [16] and 
[20]. To submit tasks, we use a single-producer single-
consumer (SPSC) lock-free queue, a standard mechanism to 
utilize in such scenario. There have been many SPSC queue 
implementations proposed throughout the years [61]–[64]. 
In this paper, we use the SPSC queue implementation 
available in Boost C++ libraries [65]. We set a capacity of 
the queue to 128 entries. 

Figure 1. Performance speedups over serial implementations of application kernels with different state-of-the-art parallel 
programming frameworks 
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 In Relic framework, a task can be submitted by calling the 
submit() function in the main thread passing pointers to a 
task routine and its arguments. To wait for the completion of 
all currently submitted tasks, the wait() function should be 
used in the main thread. 
 Relic framework could be used together with a general-
purpose parallel programming framework. Coarse-grained or 
medium-grained tasks could be submitted to the main thread 
through a general-purpose parallel framework, while further 
extremely fine-grained parallelization of these tasks within 
the same physical CPU core could be enabled with Relic 
framework.  

B. Waiting mechanism and OS thread scheduling 
If there are no tasks in the SPSC queue, the assistant thread 
will wait for the main thread to submit the work. Moreover, 
the main thread can wait for the assistant thread to finish 
execution of the submitted tasks. These waiting mechanisms 
can be implemented in many different ways. However, in 
general, there are two distinct approaches: busy-waiting and 
thread suspension. With busy-waiting or spinning, a waiting 
thread checks for a condition to become true in a loop 
consuming CPU cycles. Alternatively, a thread can suspend 
the execution and release a CPU core using one the 
mechanisms provided by the operating system. There is also 
a hybrid approach, in which a thread spins for a short 
interval and then suspends its execution. 
 Both spinning and thread suspension mechanisms have 
been well studied. It is known that spinning tends to show 
better performance for short waiting intervals in lightly 
contended environments [66]. In our case, we have only two 
communicating threads running on the same physical core 
and we focus on supporting extremely fine-grained tasks. 
Therefore, in Relic, we use busy-waiting in the main and 
assistant threads. For x86-64 machines, we use the pause 
instruction to make spinning more efficient. In Fig. 2, 
pseudocode for the main loop of the assistant thread is 
shown. 

 
Figure 2. Pseudocode for the main loop of the assistant 

thread 
However, in real-world high-performance, latency-critical 

client applications, only a part of the system could usually be 
parallelized. It means that the assistant thread might end up 
waiting in the busy loop for longer durations of time. Hence, 
it could make spinning extremely inefficient and degrade 
performance of the whole client application. One of the 
possible solutions is to use the hybrid approach. However, 
with fine-grained tasks, the overhead from awakening the 
assistant thread might outweigh performance benefits from 
the parallelization. 
 In [66], an optimization to mitigate thread awakening 
overheads is suggested, however, adopting this technology 

directly to our scenario with only one waiting thread is 
challenging. In Relic, we use a different approach. Since 
detailed profiling is usually conducted for critical 
applications, we leave it to application developers to provide 
explicit wake-up and sleep hints to the runtime. We provide 
wake_up_hint() and sleep_hint() functions for developers to 
call some time before and after parallelizable code sections 
in applications in order to wake up and suspend the assistant 
thread, respectively. This way, we enable a fine-grained 
control over the assistant thread in Relic. 
 With Relic, we enable fine-grained tasking on SMT cores 
and we expect the main and assistant threads to run on the 
same physical core. Relic framework will work correctly, if 
the threads are scheduled to different physical cores, 
however, it is not intended or optimized for such scenario. 
We do not implement the CPU pinning algorithms in Relic 
and expect users of the framework to set the CPU affinities 
for both the main and assistant threads. Either simple static 
thread binding schemes or complex dynamic scheduling 
strategies could be implemented by application developers 
to support all scenarios present in the target applications. 

VII. RESULTS 
In Fig. 3, performance speedups over serial implementations 
of investigated application kernels are presented for Relic 
parallel programming framework. 
 All of the investigated fine-grained benchmarks are 
successfully parallelized with Relic without performance 
degradations. Even the benchmark utilizing BFS algorithm is 
accelerated by 5.6% using Relic parallel framework. On 
average, Relic parallel programming framework shows 
42.1% performance speedup over serial implementations. 

  

The best achievable performance speedups over serial 
implementations with previously evaluated parallel 
programming frameworks are 5.7% for the BC benchmark 
kernel with Taskflow, 9.4% for the CC benchmark kernel 
with LLVM OpenMP, 66.5% for the PR benchmark kernel 
with GNU OpenMP, 55.7% for the SSSP benchmark kernel 
with Taskflow, 51.4% for the TC benchmark kernel with 
LLVM OpenMP, and 23.5% for the JSON parsing 

Figure 3. Performance speedups over serial implementations 
of application kernels with Relic framework 

148 
 



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 10, 2024 
 
 
benchmark with OpenCilk. Relic parallel programming 
framework increases achievable performance speedups by 
30.4%, 30.1%, 14.3%, 21.3%, and 8.6% for the BC, CC, 
PR, SSSP, and JSON parsing benchmarks, respectively. 
Only for the benchmark using the triangle counting 
algorithm, Relic framework shows lower performance 
speedup compared to the best one that is achieved using 
LLVM OpenMP. 
 As we have mentioned before, extensive profiling and 
performance analysis are usually conducted for real-world 
latency-critical applications. Therefore, performance 
degradations from the introduced parallelization for specific 
code sections would be discovered and addressed by 
reverting back to serial implementations. Thus, in Fig. 4, for 
the investigated task-parallel frameworks, performance 
speedups over serial implementations are shown without 
negative outliers, using the geometric mean to average the 
results. In case of the performance degradation on a specific 
benchmark kernel, a result for the baseline serial 
implementation is used. Hence, Relic parallel programming 
framework increases the performance benefits from the 
parallelization by 19.1% compared to LLVM OpenMP, by 
31.0% compared to GNU OpenMP, by 20.2% compared to 
Intel OpenMP, by 33.2% compared to X-OpenMP, by 
30.1% compared to oneTBB, by 23.0% compared to 
Taskflow, and by 21.4% compared to OpenCilk. 

 

VIII. CONCLUSION 
We conduct performance analysis of seven state-of-the-art 
shared-memory parallel programming frameworks on a 
simultaneous multithreading CPU core using real-world 
fine-grained application kernels consisting of graph 
algorithms and JSON parsing. We show performance 
degradations on several investigated fine-grained tasks with 
the existing task-parallel frameworks. 
 We introduce Relic, a simple specialized parallel 
programming framework enabling extremely fine-grained 
task parallelism on simultaneous multithreading cores. With 
Relic framework, we demonstrate significant performance 
improvements compared to the existing general-purpose 
parallel frameworks. 
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