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Abstract — In this article, we consider a variant of the 

Merton problem, where we choose a stochastic process (a 

risky tradable asset or a risky commodity asset) with 

random drift and volatility. It is well known in the literature 

that this leads to a stochastic optimal control problem, 

which allows for the derivation of a parabolic partial 

differential equation, known as the Hamilton-Jacobi-

Bellman (HJB) equation. This equation is commonly used to 

evaluate certain credit instruments, such as corporate bonds 

and credit default swaps (CDS), which is the case in our 

present work. The construction or definition of the value 

function involves a power transformation based on the 

solution of a linear or semi linear parabolic equation. We 

will use reduced solutions of these equations to determine 

prices of corporate bonds and credit default swap spreads 

under utility indifference. This approach will not only allow 

us to obtain analytical results, but also provide better 

insights into the dynamics of credit markets. The derived 

formulas for the valuation of corporate bonds and credit 

default swaps (CDS) can be used to develop trading 

strategies in credit markets. Furthermore, the prediction of 

credit spread dynamics and default risk will enable investors 

to construct complex trading portfolios, such as arbitrage 

and hedging strategies.
1 

Keywords— Stochastic control, Utility indifference, Value 

function, Viscosity solution. 

 

I. INTRODUCTION 

In the field of financial mathematics, the theory 

of stochastic optimal control plays an important role, 

especially in the solution of optimal investment problems 

initiated by Robert Merton. In the article [1], Merton 
presents the optimal portfolio investment problem, which 

was later generalized by research introducing more 

realistic underlying asset dynamics [2] and [3].  
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In this work, we consider a variant of the Merton 
investment problem with stochastic drift and volatility. In 

general, and in particular in [2], such a problem under 

certain assumptions about the underlying process and the 

utility function leads to a parabolic PDE of the linear [14] 

or non-linear type, whose solutions can, for example in 

mathematical finance be used to determine the price of 

certain financial instruments.  

One of the important problems in mathematical 

finance is the study related to the valuation of contingent 

claims in an incomplete market [13]. 

In this paper, we refer to the work of Georges 

Sigloch [4] and consider the following situation: An 

investor makes a loan (a debt security) to a bond issuer. 

During the term of the contract, the bond issuer may 

default (fail to pay principal or interest), leading the 

investor to seek protection against the risk of default from 
a credit protection seller. This raises a number of 

questions, in particular: firstly, how to evaluate the price 

of the financial contract (corporate bond) that will be 

signed between the investor and the bond issuer and 

secondly, how to evaluate the price of the protection 

contract (CDS) that will be signed between the investor 

and the credit protection seller.  

Proposed answers to these questions, in the case 

of a reduced-form model, were developed in [4] for 

constant underlying parameters (drift and volatility). In 

this paper, we propose a generalization of some of the 
results of [4], by determining the indifference prices 

signed between the investor and the bond issuer, then 

between the investor and the credit protection seller, 

when the underlying parameters are stochastic, inspired 

by the work of [2]. 

The paper is organized as follows: in section 2, 

we present the basic hypotheses of our model and we 

introduce the Hamilton-Jacobi-Bellman equation 

associated with the problem; in section 3, we provide the 

corporate Bond price and CDS spread by utility 

indifference method in the case of a underlying  with 
stochastic drift and  volatility; in section 4, we present the 

definition of viscosity solutions of non-linear parabolic 

partial differential equations and some simulation curves 

of the paper. 

 

II. SETUP OF THE MODEL 

We consider an investor who has at time   a self-

financing portfolio with non-risky asset (bond)    subject 
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to an interest rate function depending on time    and 

tradable risky assets (stock account) without default   
 . 

The dynamics of these non-risky and risky assets are 

respectively given by the equations: 
 

    [   ]                                           (1) 

 

    [   ]    
      

        
       

            (2) 
 

The process (  )  [   ]  will be referred to as the 

stochastic factor [2] and satisfying:   

 

                                                                  (3) 
 

such that        .                                                                                              

The functions     (    )     (    )     (    ) 
and     (    ) are assumed to satisfy all the regularity 

assumptions required to guarantee the existence and 

uniqueness of the solution of each of equations ( ) and 
( ). 
Using concepts from stochastic theory, we specify these 

basic assumptions about market coefficients: The 

functions              [   ]    satisfy the global 

Lipschitz and linear growth conditions: 

 

                 | (   )   (   ̅)|   |   ̅|                       (4) 

 
                        (   )    (    )                              (5) 

 
for each    [   ]    ̅    and   being a positive 

constant and   representing       and  . Such that the 

conditions ( ) and ( ) are standard for the existence and 

uniqueness of solutions of the state stochastic differential 

equations ( ) and ( ) (see ( )). 

 On the probability space (     ), the Brownian 

motions    and    are correlated with coefficient 

correlation   [    ]. 
At any time   [   ], it is reasonable to assume 

that the investor has complete information about the price 

of the risky asset   
 . We model the state of the 

information given to the investor by     (         
        ) with    the set of negligible subsets of   

and (  )  [   ]  satisfies the usual conditions:  it is 

complete (contains  ), continuous on the right and 

increasing. 

We define   
  as the amount invested in    and    as the 

amount invested in   
 . The control    is assumed to be 

admissible, i.e.: satisfies the integrability condition 

 [∫   
  

 
  

   ]      and is   -progressively 

measurable. The total wealth of the investor satisfies the 

budget constraint      
      and by the hypothesis of 

self-financing of the portfolio, its dynamic is defined by 

SDE: 

                [       (                          (6) 
 

with                 and as wealth, at any 

moment   it must be positive almost everywhere. The 

value function of the investor is 

 

    (     )          [ (  )|         ]          (7) 

 

where   is the set of admissible policies,    is the 

terminal wealth and   is a CARA (Constant Absolute Risk 

Aversion) utility function that is concave and non-

decreasing   

                        ( )                                        (8) 

 

where   the risk aversion coefficient. 

The representation of the value function in a separable 

form  (     )   (  ∫    
 
  ) (   ) allows to highlight 

a function   in general unknown and which verifies a 
nonlinear partial differential equation. Using the 

reasoning of [2], we transform the function   into a 

power of another function which will be the solution of a 

reduced parabolic linear equation and in another case a 

semi-linear equation. 

 Under exponential utility function   written on the 

wealth of the investor, the value function is represented 

by  (     )        ∫    
 
  

 (   ) where    [   ]  
     verifies the nonlinear parabolic equation:  

                      

{
    

  
 

 
    [   

    (     )

  
]    

 

 
(
     

  
)
 
  

    
 

 

  
 

 
  

 (   )     
 

(9)  

such that the proof of (9) can be found in the APPENDIX 

in Proof 1 in the subsection Some Proofs. 
 

Considering the new transformation  (   )    (   ), 
we deduce the following linear parabolic differential 
equation: 

 

     
  

 

 
    [   

   (     )

  
]    

(    )

 

(     )
 

  
          (10) 

 for the value of the parameter   satisfying:  

 

                                    
 

                                          (11) 

 

we will call   the distortion power, with reference to 

Zariphopoulou [2]. 

 

Proposition 1 

We assume that (   )     (   )     (   )  

 
   (     )

  
 and (   )   

    

 

(     )
 

  
  are bounded and 

uniformly Hölder's continuous in [   ]     Moreover, 

we assume that    is uniformly elliptic. Then the value 

function   is twice continuously differentiable with 

respect to (   )       and continuously differentiable 

with respect to   for   [   )  
 

Proposition 2 

i. The value function is given by: 

             (     )        ∫    
 
  

 (   )
 

                    (12) 
 with   
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              (   )    ( 
 

    

 
∫

(     )
 

  
  

 
  

|    )        (13) 

 and   the risk-neutral measure, such that   

     (   
   (     )

  
)         ̃  

where    ̃     ∫
   (     )

  
  

 

 
 is a Brownian motion 

under risk-neutral measure  . 

 

ii. The optimal control   
    (   ) is given by  

  

                     
  

 

 
  ∫    

 
  (

     

  
  

 

    

  

  

  

 
).         (14) 

 

Remark 1 

The value function   is concave and non-decreasing with 

respect to the wealth variable   due to its close 

dependence on the utility function    
 

Remark 2 

The value function   is a constrained viscosity solution 

of (46) with terminal condition  (     )         
  

For the next, we assume that uniformly in     

and   [   ]  the volatility coefficient    satisfies 

      for some constant     , and for some positive 

constant    we have:  

                                    
(     )

 

  
                                  (15) 

  

and that this condition (15) will be used to determine the 

growth conditions for the value function and to facilitate 

relevant verification results.  

  

 The following theorem provides a verification 

result for the value function. 
 

Theorem 1  

The value function   is given by  (     )  

      ∫   
 
   

  (   ) where   is the unique viscosity 

solution of (  ) with terminal condition  (   )    and 

  is given in (  ).  
 

Proof. When we apply the results of [7], It is easy to 

conclude that equation [10] satisfying the boundary and 

terminal conditions  (   )   , has a unique viscosity 

solution. In fact, considering condition [15], the function 

  verifies    
(    )  

 
(   )

 and by applying the definition 
of viscosity solutions, we obtain directly that 

  (     )        ∫    
 
  

  (   ) is a viscosity solution of 

the equation HJB (46) in [   ]        The sub-

solution property of viscosity is automatically satisfied at 

the limit point    , where the slope of   is finite. Thus, 

  is a viscosity constrained solution of the HJB equation 

(46), belonging to the appropriate class of solutions where 

uniqueness has been established. We obtain that   

coincides with the value function, and therefore   is 

effectively given by the proposed closed solution. 

III. CORPORATE BOND PRICE AND CDS SPREAD BY 

UTILITY INDIFFERENCE WITH STOCHASTIC DRIFT AND 

VOLATILITY 

During the investment period, the agent can invest part of 

his wealth in a corporate bond or a CDS and the rest in 

the portfolio of non-defaulting risky assets   
   and non-

risky asset    with dynamics defined above. The default 

on the reference entity is modeled by a Poisson process 

   with intensity   (since our credit risk default model is 

of reduced form [12]) and the default time denoted    is 

defined by:                   
Let us construct this section by evaluating by the 

utility indifference method the price of the corporate bond 

   for a portfolio with non-risky assets and risky assets 

without default. Let us specify that this price is the one 

that provides the investor with the same level of expected 

utility when he invests the rest of his wealth           in 

non-risky assets    and risky assets of values   
  or when 

he invests all his wealth   in these same assets. By buying 

a corporate bond, the investor receives a notional amount 

of    at maturity if the reference entity does not default 

before the maturity  ; or receives a percentage   

(assumed here as a random variable independent on (   ) 
of Brownian motion   ) of the notional amount in the 

event of default before maturity.  

Since for future cash flows, the certainty equivalent (see 

[4] and [6]) is the amount we would be willing to receive 

without risk, relative to expected future cash flows. The 

net present value of an investment can then be defined as 

the sum of certain cash flow equivalents discounted at the 

risk-free rate. The certainty equivalent of   verifies  

 [ (   ∫    
 
  )]   (  ̃  ∫    

 
  ) in  

[4,39] and is defined by   

 

  ̃   
 

   ∫    
 
  

   [      ∫    
 
  

]  

The investor's wealth dynamic with contingent claim is 
given by: 

                             

{
    [       (     )]          

                         

                 (16) 

 

where      (    ) and limit wealth represents the fact 

that if the default on the reference entity occurs before 

maturity (   ) then the investor receives a random 

percentage   of the notional and in the opposite case 
(   ) he receives the whole notional.  

The value function of the investor for a portfolio with 

contingent claim is  

 

   (     )          [ (  )|              ]   
(17) 

 

The value function (  ) associated with the state 

process (  ) satisfies the following HJB equation 
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(     )          

  (     )   ,                   

(18) 

 

with  (     )   (   )       and where         

   (     )  [      (     )]
  

  
(     )

 
  

   

 

   

   
      

  

  
(     )

 
  

 

 

   

   
(     )

        

   

    
(     )

  [ (      ̃   )   (     )]  
Similarly, to Section II, the value function is represented 

by  (     )        ∫    
 
  

 (   )  where    
    ([   ]   ) and verifies the nonlinear parabolic 
equation 

 

   
  
 

 
    [   

   (     )

  
]    [

(     )
 

    
  

 

 
]      

     
  
 

 
(        )

  
 

 
 

 

 
     ̃  ∫    

 
   

         (19)  

with terminal condition  (   )    
  

 , such that the 

proof of (19) can be found in the APPENDIX in Proof 2 

in the subsection Some Proofs, with    the function 

defined in section II by  (   )   (   )
 

     and   
defined by (  ). For the value of the parameter (another 

distortion power)   satisfying: 

 

                                      
 

                                       (20) 

 

this equation (  ) becomes the following semi linear 

parabolic differential equation 

   
  
 

 
    [   

   (     )

  
]    (    ) [

(     )
 

   
  

       ]      (    )     ̃  ∫    
 
  

 
 

     
 

  

           (21) 

with terminal condition  (   )     (    ) . 

 

Remark3                                                                                               

   (    )  
  

        In particular, if      then  

 
  

       
 

       and (  ) becomes  

   
  

 

 
         [

(     )
 

   
   ]         ̃  ∫    

 
  

        (22)  

with  (   )      . 
 

Proposition 3 

iii. The solution of (  ) is given by:  

 
 (   )  

    [  (     ) 
 ∫

(     )
 

   
  

 

 
 
  ∫     

 

 
 

 ∫
(     ) 

   
  

 

 
 
 (   )  |    ] (  )

with    [   ]          ̃  ∫    
 
   and  (   )  

 (   )  given by 

                   (   )   [ 
 

 

 
∫

(     )
 

  
  

 
  

|    ]           (24) 

iv. The optimal control   
 
  

 
(   ) in this 

particular case is  

               
 
 

 

 
  ∫    

 
  (     )

  
 .                     (25) 

In the following theorem, we can define the price of the 

corporate bond when      
 

Theorem 2 

The utility indifference price     (   ) of corporate 
bond is given by 

                      
 

 
  ∫    

 
    (

 (   )

 (   )
)                          (26) 

 

Proof. We know that an indifference price   is the price 
for which an agent (an investor in our case) would have 

the same level of expected utility when he invests the rest 

of his wealth     in his portfolio as by not doing so. 

We can write 

 (       )   (     )      (   ) ∫    
 
  

 (   )

       ∫    
 
  

 (   )  

     ∫    
 
  

 (   )   (   ) 

    ∫    
 
     (

 (   )

 (   )
) 

   
 

 
  ∫    

 
    (

 (   )

 (   )
) 

   

Thus, considering     , we obtain the result. 
 

This following section allows us to evaluate continuous 

CDS premium that the investor pays to the protection 

seller. 

In the following, we now assume that the investor buys a 

CDS and pays a continuous premium rate   ( ) paid on 

the notional amount   from the time the contract was 
established until maturity or the time of default of the 

reference entity, whichever comes first. If default occurs 

before maturity, the investor receives a random payment 

of (   )  and all future premium payments cease. 

 

Similar to the equation (16), we have the dynamics of the 

investor's wealth with the CDS premium rate given by the 

equations (27) and (28) and define by: 

   

   ̃  [    ̃     ( )    ̃(     )]     ̃             
                                                                    (27) 

 

    ̃  [    ̃    ̃(     )]     ̃               (28) 

 

where the limit wealth   ̃     ̃   (   )            

Here,       for the CDS seller and      for the 

buyer.   

The value function of the investor for a portfolio with the 

CDS premium rate is                       
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  ̃(     )       ̃   [ (  ̃)|  ̃             ]    
(29) 

The value function (29) associated with the states (27) 

and (28) satisfies the following HJB equation 

                  
  ̃

  
(     )       ̃    

 ̃  ̃(     )   ,          

(30)                     

   with  ̃(     )   ( )     and where        

  
 ̃ ̃(     )  [       ̃(     ) 

     ( ) ]
  ̃

  
(     )

 
  ̃

   
 

 

   ̃

   
(     )    

  ̃

   
(     )

 
  

 

 

   ̃

   
(     )

      ̃  

   ̃

    
(     )

  [ (     (    ̃)   )

  ̃(     )] 

as before, we consider  ̃ in the form  

                   ̃(     )        ∫    
 
  

 ̃(   )  

where  ̃      ([   ]   ) and verifies the nonlinear 
parabolic equation 

  ̃  
  

 

 
 ̃   [   

   (     )

  
]   ̃  [

(     )
 

    
  

 

 
 

      
 

 
  ( )  ∫    

 
  ]  ̃  

  
 

 
(        )

  
 ̃

 ̃
 

           
 

 
   (    ̃)  ∫    

 
   

 ̃                                      (31) 

For the value of the parameter (another distortion power) 

  satisfying:  

  
 

    
 

this equation (31) becomes the following semi linear 

parabolic differential equation 

   ̃  
  

 

 
 ̃   [   

   (     )

  
]   ̃    (    ) [

(     )
 

   
  

         ( )  ∫    
 
  ]  ̃  

 (    )    (    ̃)  ∫    
 
  

 
 

     ̃
   

  

      ,           (32)             

with terminal condition  ̃(   )    and for the same 
particular reasons as in remark (Remark 2), equation (32) 

becomes: 

 

   ̃  
  
 

 
 ̃       ̃  [

(     )
 

   
        ( )  ∫    

 
  ]  ̃  

             (    ̃)  ∫    
 
  

                                           (33) 

with  ̃(   )   . 
 

Proposition 4 

v. The solution of (33) is given by: 

        
 ̃(   )

  [  ∫  (   ) 
 

 
   ∫    (    ̃)  ∫    

 
  

 (   )  ∫  (   ) 
 

 
 

 

 

  |    ] (  ) 

with  (   )  
(     )

 

   
        ( )  ∫    

 
   

vi. The optimal control   ̃
 
= ̃ (   ) in this 

particular case is  

                  ̃
  

 

 
  ∫    

 
  (     )

  
 .                 (35) 

 

Theorem 3 

The utility indifference spread   ( ) of CDS is implicitly 

given by the following       equation  

                 

  
   ∫

(     )
 

   
  

 

 
 
∫  (   )

 

 
 

    ∫ (
(     ) 

   
       ( ) ∫    

 
  )

 

 
  

   

                 (   )   ∫   ( ) 
∫    
 
   

 

 
                               (36) 

  

where for   [   ]         (    ̃)  ∫    
 
    

 

Proof. Similar to the price of the defaultable bond, the 

indifference credit default swap spread is defined as the 

value   ( ) satisfying the equation  ̃(     )  

 (     )   ̃(   )   (   )  when the coefficient 

correlation     and leading to the desired equation. 

 
Remark 3 
Under the power utility function, Zariphopoulou Thaleia 

in [2] obtains a distortion power   that depends on the 

risk aversion coefficient   and the correlation   between 

the brownian motions that modulate the stock price   
  

and the factor process    respectively. On the other hand, 
in our work and that of Boguslavskaya Elena and 

Muravey Dmitry in [8], under the exponential utility 

function, we obtain a distortion power depending solely 

on the correlation coefficient.  

IV. SIMULATION CURVES OF THE PAPER 

A. Distortion Powers as a Function of Correlation 

 

All the distortion powers     and   in our problem are 

equal and positive and defined by:       
 

     on 

the interval [    ]  A representation of these distortion 

powers is given in the following figure: 

   

                                                       

 
Fig.1. Distortion powers as a function of correlation. 
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B. Certainty Equivalent (  ̃)  [   ]
 of Random Rate   

in the Event of Default and Instantaneous Variance 
(  )  [   ]. 

We present below the representative trajectories of the 

certainty equivalent of the rate   and of the instantaneous 

variance process which governs the volatility of the factor 

process (risky asset). For all    trajectories, the risk 

aversion coefficient      . 

 

      

 

    

Fig.2.                         
                   . 

  

 

       
Fig.3.                          

     (    )    √           4. 

 

     
Fig.4.                          

     (    )              . 

C. Utility Indifference Price    of Contingent Claim. 

 

We present above in Fig.5 and Fig.6 the utility 

indifference price surface of the contingent claim    as 

conditional expectation knowing the variation of the 

factor stochastic process   .  

 

       

 

 

Fig.5.                           
     (    )             4 

 

 

 

 

         
 

 

      Fig.6.                           

           (    )    √           4. 

 

Unlike the numerical analysis of bond yield term 

structures with several levels of risk aversion presented 

by Sigloch [4], in our case, we set the coefficient of risk 

aversion to       and modify the dynamics of the 

underlying process    and the factor process   , and then 

observe the surface   . 
 

APPENDIX 

 

A. Definition of Viscosity Solutions of Non-Linear 

Parabolic Partial Differential Equations. 
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We note that the notion of viscosity solutions was 
introduced by [9] for first-order equations and by [10] for 

second-order equations. However, a general overview of 

the theory can be found in [11]. 

 

Consider a non-linear second-order partial differential 

equation of the form 

 

               (          )       [   ]                   (37) 
 

in which         and     denote the gradient vector 

and the second-derivative matrix of  , and the function   

is continuous in all its arguments and degenerate elliptic, 

meaning that 

 

 (         )   (       )        
 

 A continuous function   [   ]      is a 

viscosity solution of (37) if the following two conditions 

hold: 

  

a)   is a viscosity subsolution of (37) on [   ]   ; 

that is, if for any       ([   ]   ) and any 

local maximum point    [   ]    of    , 

 (    (  )   (  )  
  (  ))     

 

b)   is a viscosity supersolution of (37) on [   ]  

 ; that is, if for any       ([   ]   ) and 

any local minimum point    [   ]    of 

   ,  (    (  )   (  )  
  (  ))     

  

B. Some Proofs. 

Proof.1. First, we construct the partial differential 

equation verified by    

Let's move on to double inequality:  

 ) Show first that,  

  

  
(    

 )     
    

   (    
 )     

Let       the process   
  (  

   )
(   )       [   ]

  and 

the function        (where   is the set of 

admissible policies of this problem) such that  

   
      (    

    )   ∑     (    
    ) 

 

    

  
   

and by using the Ito's multidimensional formula on a 

function    

  (    
 )

 [
  

  
(    

 )  ∑
  

   

(    
 )  (    

    )]

 

   

   

 
 

 
∑

   

       
(    

 )∑   

 

   

    (    
    )    (  

    
  )  

 

      

  

 ∑
  

   
(    

 )∑     (    
    )   

   
    

 
      

then by integrating between   and      , we obtain: 

 (        
 )   (    

 ) 

 ∫ [
  

  
(    

 )  ∑
  

   
(    

 )  (    
    )

 
   

   

 
 

 

 
∑

   

       
(    

 )∑     
       (    

    )    (  
    

  )]   
        

 ∫ ∑
  

   
(    

 )∑     (    
    )   

   
    

 
   

   

 
     

We set the following expression, which represents the 

infinitesimal generator:  

   (    
 )  ∑

  

   
(    

 )  (    
    )

 
    

 

 
∑

   

       
(    

 )∑     
       (    

    )    (  
    

  ) 
        

 and we then obtain the new Ito process: 

 (        
 )   (    

 )

 ∫ [
  

  
(    

 )     (    
 )]  

   

 

  

                ∫ ∑
  

   
(    

 )∑     (    
    )   

   
    

 
   

   

 
   

Thus, applying conditional expectation on the part and 

other sides of this equality with   (          )  we 

obtain: 

 [ (        
 )|  

   ]

  [ (    
 )  ∫ [

  

  
(    

 )     (    
 )]  

   

 

|  
   ] 

  [∫ ∑
  

   

(    
 ) ∑     (    

    )   
  

 

    

 

   

   

 

|  
   ] 

since the expectation of the Ito’s stochastic integral is 

zero, the result is 

 [∫ ∑
  

   
(    

 )∑     (    
    )   

   
    

 
   

   

 
|  

   ]  

                                                                                     (38) 

We will get  

 [ (        
 )|  

   ]  

 (   )  

      [∫ [
  

  
(    

 )     (    
 )]   

   

 
|  

   ]     (39) 
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because the expectation is linear and   

 [ (    
 )|  

   ]   (   ). 

By definition of the value function,  

             (   )   [ (        
 )|  

   ]             (40) 

Thus from (39) and (40) we get 

 [∫ [
  

  
(    

 )     (    
 )]   

   

 
|  

   ]     (41) 

From Equation (41), we deduce an inequality almost 

surely under the probability measure  . By dividing it by 

  and letting   approach 0, we obtain this expression: 

               [
  

  
(    

 )     (    
 )]                        (42) 

this is true for all       , and we will get: 

         
  

  
(    

 )            (    
 )                        

(43) 

We still need to prove the second inequality. 

 ) Then prove that, 

[
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We can consider that      
  is the optimal control: 
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where     
  and applying the Ito formula between    and 

     , we get: 
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Taking conditional expectation, also by using the 

definition of our value function, then by dividing it by   

and letting   approach 0, the following expression: 
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allows us to write: 
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leading to: 

         [
  

  
(    

 )            (    
 )]                (44) 

Using the (43) and (44) relationships, it can be concluded 

that: 
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(45) 

After these two inequalities constructed, we make the 

following considerations for     and         : 
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in order to obtain the following PDE: 
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(46) 

Where  
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considering that  (     )        ∫    
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replacing the expression of   in (46), we obtain: 
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This equation is equivalent to: 
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By setting,  
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The first-order optimality condition:                         
  (  )
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then the optimal control is 
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Let introduce this expression in (47), we will get 
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By a simple development, we can conclude that this is 

equivalent to: 
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Proof.2. Given equation (18) of HJB  
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the method of separating variables allows us to construct 
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    ([   ]   ). Using this transformation of     (18) 
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equivalent to, 

    
       

    
    (     )  

∫   
 
     

 
  

   
 

 
(    ∫   

 
     )        

   

 
  

 

 
(     

     (   )  
     )

        (   ∫   
 
      

   )

       ̃  ∫   
 
   

         

We consider, 
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the first-order optimality condition on  (  ) is 
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we deduce,  
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the previous PDE gives,  



International Journal of Open Information Technologies ISSN: 2307-8162 vol. 12, no. 6, 2024 
 
 
 

112 
 

    
      

 
(     )  

∫   
 
     

 
  

 (  
 
)
 

 
(    ∫   

 
     )

       
   

 
  

 

 
(     

     (   )  
     )

        
 
(   ∫   

 
      

   )

       ̃  ∫   
 
   

        

and after the substitution   
 
 by its value and 

reorganization of the terms, we finally obtain the equation 

(19) defined by:    
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This indicates the derivation of the nonlinear partial 

differential equation in  . 
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