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Abstract— The importance of Magnetometer measurement 

in all the fields that are related to moving bodies including 
UAV, they are used for calculation the attitude of moving body, 
they are also can integrated with other sensors to calculate 
accurate position moving body. According to that, there is an 
urgent need to get accurate data from magnetometer, the raw 
data can be used directly or can be processed by a calibration 
process. In this article, an assessment of using neural network 
(NN) in calibration magnetometer is conducted, the NN model 
is a sequential model that consists of many layers, the dataset 
contains raw measurements and calibrated data. The model 
achieved learning accuracy 99.38 % and loss 1.411 𝝁𝑻; the loss 
metric is mean square error. The dataset was split into three 
parts, train, test and validation. Train and validation parts are 
used in the training process. The trained model is tested on the 
test part, on the whole dataset and on noisy dataset by adding 
some noise on raw data and test the efficiency of NN model. 
The results showed high efficiency of NN model in calculating 
calibrated output directly from raw measurements. A structure 
of NN is also discussed. To validate the proposed method in the 
field of UAV orientation, heading angle by using magnetometer 
data is calculated for raw, calibrated, output of proposed 
method and another calibration method on the same dataset. 
 

Keywords— Magnetometer, Calibration, Neural Network, 
Sequential model. 

I. INTRODUCTION 
In the field of scientific and technological advancement, 

there is an urgent need of precision and accuracy. This holds 
in many fields that need measurements from sensors, since 
sensors are the most important tools in any real systems and 
in the same time, they are most susceptible to noise. In the 
field of magnetometry, where the measurement of magnetic 
fields plays an important role in various applications that 
range from geophysics and environmental monitoring to 
medical diagnostics and aerospace navigation. The accuracy 
of magnetometer measurements directly influences the 
reliability and efficacy of the data obtained when used in 
real application and calculations. This shows the 
fundamental aspect of magnetometry calibration   [1]. 

Magnetometers are sensors that are used to measure 
magnetic field in the location where they are placed. A 
magnetic field's strength, direction, or relative change at a 
specific area can all be measured using different types of 
magnetometers. Calibration, the process of adjusting and 
tuning sensors outcomes, the main aim of magnetometer 

 

calibration is to ensure the accuracy and reliability of 
magnetometer data. In this exploration, it should be 
explained briefly that the outputs of magnetometer can be 
affected by many conditions.  Calibration can be also 
defined as a process of converting raw data of measurements 
of magnetometer into calibrated data   [2]. 

According to the fact that the magnetic components on 
the aircraft itself can interfere with the desired magnetic 
measurements that are required to navigate. The 
measurements of magnetometers contain magnetic signals 
from both the (desired) earth field and (undesired) aircraft 
field. According to this inference, it is difficult to separate 
the two signals. Many studies used linear methods to clean 
the magnetic signal, uses a single pair of scalar and vector 
magnetometers   [3].  

There are basically two reasons why raw measurements 
will not be accurately equal the true value of magnetic 
field   [4]:  

• Errors in the magnetometer triad: These errors 
contain some components  
 Non-orthogonality of the magnetometer axes. This 

is defined by matrix (3×3) 𝐶𝑛𝑜 
 Existing of zero bias: this holds that 

magnetometer measures a non-zero magnetic field 
even when magnetic field is zero, this is defined 
by 𝐵𝑧.  

 There is a difference in sensitivity between the 
three axes of magnetometer, this is represented by 
matrix (3×3) 𝐶𝑠; it is diagonal matrix.  

 Noise in the magnetometer measurements. This in 
most cases is assumed to be Gaussian noise; this is 
defined by 𝑁𝐺. 

• Existing of magnetic disturbances: magnetometer 
does not measure only the local magnetic field, but 
also an additional magnetic field component. In 
general, magnetic disturbances are not stationary and 
constant especially when existing iron bodies near the 
magnetometer, rigidly installation of sensor might 
decrease disturbances. The existing of iron body will 
negatively affect the measurements because of hard 
and soft iron. Hard iron effects are due to the 
permanent magnetization of the magnetic material 
and lead to a constant additional magnetic field. The 
vector representing these effects is denoted as 𝐵ℎ𝑖 . 
Soft iron effects are due to magnetization of the 
material as a result of an external magnetic field and 
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will therefore depend on the orientation of the 
material with respect to the external field. It can 
change both the magnitude and the orientation of the 
measured magnetic field. This is defined as matrix 
(3×3) 𝐶𝑠𝑖.  

After all, the equation between raw measurements and 
true values is 

 

𝑀𝑐(3×1) = 𝐶𝑠 ∗ 𝐶𝑛𝑜 ∗ (𝐶𝑠𝑖 ∗ 𝑀3×1 + 𝐵ℎ𝑖) + 𝐵𝑧 + 𝑁𝐺 
𝑀𝑐(3×1) = 𝐶𝑠 ∗ 𝐶𝑛𝑜 ∗ 𝐶𝑠𝑖 ∗ 𝑀3×1 + 𝐶𝑠 ∗ 𝐶𝑛𝑜 ∗ 𝐵ℎ𝑖 + 𝐵𝑧 + 𝑁𝐺 (1) 

 
Where 𝑀3×1 is 3 axes measured magnetic fields, 𝑀𝑐(3×1) 

is 3 axes calibrated magnetic fields. The Eq. 1 shows that 
the true representation contains linear disturbance of 
magnetometer. The effect of temperature changes is not 
shown in this equation, this needs experimental calculations; 
this effect might be nonlinear.  
The traditional equation of calibration is basically as follows 

𝑀𝑐(3×3) = 𝐴3×1 ∗ 𝑀3×1 + 𝐵3×1 (2) 

Where A and B are calibration parameters. To obtain the 
calibration parameters A and B, a set of measurements of 
the magnetic field M along with corresponding known 
values of the magnetic field 𝑀𝑐 should be collected. This 
forms a set of equations that can be solved to find the 
calibration parameters. 

The calibration process involves solving for A and B in 
the equation Eq. 1. Depending on the number of 
measurements and the precision of calibration process, it 
may be used different techniques such as least squares 
regression to find the best-fitting calibration parameters. 
Here are some common methods for magnetometer 
calibration   [5]: 

Linear Regression: Using linear regression techniques to 
find the best-fitting calibration matrix A and bias vector B 
that minimize the difference between measured and true 
magnetic field values. 

Ellipsoid Fitting: Model the calibration as an ellipsoid 
fitting problem. This is particularly useful when the 
magnetic field measurements are subject to distortions. 

Least Squares Optimization: Using optimization 
techniques such as least squares to minimize the difference 
between the measured and true magnetic field values. 

Geomagnetic Field Modeling: Using mathematical 
models of the Earth's magnetic field to calibrate 
magnetometer readings. This is common in navigation 
applications. 

Manufacturing Calibration: Perform factory calibration 
by characterizing each sensor's individual characteristics 
during the manufacturing process. This information can be 
used to create compensation parameters. 

Magnetometers has an important role in orientation 
estimation. Their significance concludes in ability to 
measure information about the Earth's magnetic field, which 
enables the estimation of an object's orientation in the space. 
Also, it can be integrated into sensor fusion algorithms with 
other sensors such as accelerometers and gyroscopes; 
magnetometers improve the accuracy and robustness of 

orientation estimation. The orientation information serves to 
get a global reference frame, allowing for precise heading 
estimation. This is especially valuable in navigation 
systems. Moreover, accurate magnetometers measurements 
have a key role in correcting drift in gyroscope 
measurements. In environments where GPS signals are 
weak or denied, such as indoors or underwater, 
magnetometers become indispensable for maintaining 
accurate orientation estimates. Beyond navigation, 
magnetometers have now used in features like automatic 
screen rotation in smartphones and tablets, also in attitude 
control of unmanned aerial vehicles.  

The main aim of the article is to reduce the complexity of 
calibrating the magnetometer and increase reliability of their 
outputs, thus will directly lead to increase the accuracy of 
determining the orientation angles of the UAV. The research 
will depend on using of a neural network to correct errors or 
raw outputs of magnetometers and analysis the structure of 
NN to find best structure. 

II. RELATED WORKS 
Authors in   [6] investigated calibration of the 

magnetometers of non-dedicated satellites using neural 
networks. The transformation is encapsulated in a workflow 
named Macaw (Magnetometer Calibration Workflow). They 
used raw magnetometer measurements, housekeeping data, 
and telemetry data. They merged data for one month. 
Macaw contains many layers that do many stages of 
preprocessing the main aim is calibration to accurately 
calculate the earth magnetic field monthly or daily at 
specific location.  

In   [7], authors conducted yaw/heading estimation method 
and focus how to achieve high accuracy of estimation 
through a Machine Learning (ML) approach, particularly 
when the calibration motion range of the vehicle/device is 
limited. They used Random Forest (RF) algorithm and 
employ it after training to address magnetometer 
uncertainty. They had reference from the Pan Tilt Unit-C46 
(PTU-C46) with precise positioning serves as a reference 
heading value for labeling magnetic features in the learning 
model. Their main approach facilitates estimation yaw 
regarding challenging conditions to overcome many 
challenges that are related to susceptibility of magnetometer 
to hard and soft iron in the surrounding environment. RF 
model used 5 features: 3 axes magnetic fields (𝑀𝑥 ,𝑀𝑦 ,𝑀𝑧), 
the sphere radius, and the ratio between 𝑀𝑥  and 𝑀𝑦 and the 
output is Yaw angle. The experiment was carried out using a 
low-cost platform equipped with Micro-Electro-Mechanical 
System (MEMS) sensors as gyroscope, accelerometer, and 
magnetometer. They applied sensor fusion approach to track 
the yaw value after the level calibration despite various error 
conduction. The RF model accomplishes a superior result 
with more stability and more minor error. Under iron 
disturbance or calibration absence, the ML model still 
maintains the good tracking command with maximum Mean 
Square Error of about 0.3◦. 
Authors in   [8] implemented neural networks for calibration 
of magnetometers by using additional magnetometer and 
other flight data. Their approach has been shown to 
outperform the state-of-the-art model when only in-cabin 
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data is used. On held out testing data, magnetic signal errors 
of less than 6.5 nT and navigation position errors of less 
than 45 meter are consistently achieved 

 
Figure 1: Approach in  [8] 

Data aux: raw measurements and other data (using the 
Tolles-Lawson model   [9], which is a linear model that uses 
measurements from a vector magnetometer to remove 
aircraft magnetic field contributions to the scalar 
magnetometer measurements, which are used for 
navigation), the output of NN is multiplied by Matrix A 
from calculations of Tolles-Lawson model, this needs 
another magnetometer (fluxgate) to calculate the matrix A. 
The main difference between study  [8] and our approach is 
that the proposed approach needs after training only the 
measured values from the sensor. In addition, the main 
significance of proposed approach may lie in choosing the 
optimal neural network architecture for calibration and 
correcting the error of the magnetometer. 
 

III. METHODS 

A. Neural network 
A neural network can be defined as function 

approximator, it is composed of many interconnected layers 
of nonlinear functions. This architectural enables neural 
networks to effectively model and approximate complex, 
nonlinear relationships within data. Composition of these 
nonlinear transformations allow neural network to represent 
mathematical functions with ability to adapt and learn from 
diverse datasets for a wide range of applications in machine 
learning and artificial intelligence such as pattern 
recognition, classification, regression, and decision-making. 

 
Connected nodes have weight and biases; during a 

training phase, the weights of connections between neurons 
are adjusted to process information through the network. 
They are adept at deriving complicated patterns from data 
and forecasting outcomes using those patterns   [10].  
Sequential model is used in this research, sequential model 
is a type of neural network architecture that is defined using 
a linear stack of layers, which is implemented in various 
deep learning frameworks, including TensorFlow and 
Keras   [11]. The Figure 2 shows the overall process. The 
data is measured by the board that contains FXOS8700 3-
Axis accelerometer and magnetometer, and the FXAS21002 
3-axis gyroscope (Adafruit Precision NXP 9-DOF Breakout 
Board - FXOS8700 + FXAS21002) 1 
 
 
The using of neural network has advantage that the 
calibration parameters are not only A and B as in Eq. 2; they 

1 https://www.adafruit.com/product/3463 

are many parameters of network weights and biases, the 
next equation shows the output of first layer neurons; 
Suppose 𝑀𝑗 is vector of input of layer 𝑗, 𝐿𝑗 is length of 
vector 𝑀𝑗, 𝐴𝑛 is vector of weights of neuron 𝑛, 𝑓𝑛 is 
activation function of neuron 𝑛. 𝐵𝑛 is bias on neuron 𝑛. 𝑁𝑗 is 
number of neurons in each layer  

𝑀𝑗+1(𝑛) = 𝑓𝑛 ��𝐴𝑛𝑖 ∗ 𝑀𝑗𝑖 + 𝐵𝑛

𝐿𝑗

𝑖=0

� 

�
𝑀𝑗+1(1)

⋮
𝑀𝑗+1(𝑁𝑗)

� =

⎝

⎜
⎜
⎜
⎜
⎛ 𝑓1 ��𝐴1𝑖 ∗ 𝑀𝑗𝑖 + 𝐵1

𝐿𝑗

𝑖=0

�

⋮

𝑓𝑁𝑗 ��𝐴𝑁𝑗𝑖 ∗ 𝑀𝑗𝑖 + 𝐵𝑁𝑗

𝐿𝑗

𝑖=0

�
⎠

⎟
⎟
⎟
⎟
⎞

  

(3) 

𝑀0 is the raw measurements of magnetometer. By 
comparing Eq. 3 and Eq. 2, it can be concluded that NN 
with its many layers has many parameters that would make 
calibration more robust. 
 
 

B. Dataset 
The dataset was available on GitHub, Figure 4 shows raw 
and calibrated values of magnetometer readings. The main 
steps to use NN as approach: 

• Get Magnetometer measurements in location where 
earth magnetic field is known. As the size of data 
increases, the accuracy increases only up to a certain 
limit, after specific limit the increase of dataset will 
be useless and it should reconsider other ways of 
increasing accuracy such as structure of neural 
network; however, the most important thing is to 
measure in different positions (as suggestion: 
measurements in all possible combinations of North, 
South, East and West will be sufficient). The 
collected data at least should contain these 
combinations for accurate calibrations.  

• Train the model 
• Using Trained model from previous step 
In the case of perfect calibration, a magnetometer 

measures the local magnetic field and its measurements will 
therefore lie on a sphere with a radius equal to the local 
magnetic field and centered in 0. Figure 4 shows raw data 
and calibrated data from the dataset (when plotting X and Z 
coordinates of data) 
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Sequential 
model  Training Trained 

model
Raw Data

Clibrated data

 
Figure 2: Overall all approach 

 
The evaluation process is shown in Figure 3 

Trained 
model

Raw Data Clibrated data

+ Trained 
model

Clibrated dataNoise 

 
Figure 3: Evaluation process 

  

 
Figure 4: Magnetometer (raw and calibrated) from dataset 

IV. IMPLEMENTATION AND RESULTS 

A. Training  
The implementation was accomplished using python 

programming language. Sequential model and Dense layers 
were used from Keras library. The first sequential model 
that was tested contains: 

• First dense layer with 128 units (neurons), activation 
function is Relu: Rectified linear unit 

• Second layer with 64 units (Activation function is 
Relu) 

• Third layer with 32 units (Activation function is 
Relu) 

• Forth layer (the last) with 3 units (Activation 
function is linear); the problem here is not 
classification or clustering problem, it is regression 
problem and that needs linear activation function in 
last layer and loos function of type regression such 
as mean square error. 

Dataset was split into three parts: test part (124 samples) 
train part (160 samples) and validation part (40 samples). 
The process of splitting is shown below in Figure 5 
 

dataset

Test part (124) Rest (200)

Validation (20 %) Train (80 %)
 

Figure 5: Splitting of dataset 
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The neural network's parameters are trained using the 
training set, and hyperparameter tuning is greatly aided by 
the validation set. Hyperparameters are configuration 
options, like the number of needed hidden layers or number 
of neurons in each layer, that affect learning but are not 
learned during training.  

The test set is used to assess the neural network's 
capacity for generalization after the model has been trained 

and hyperparameters have been adjusted using the validation 
set. The final accuracy is 99.38%. this accuracy is how 
model is trained, it is just index if the model is trained or not 
and how well it is trained, the effective metric is the loss 
value of model because the proposed model is regression 
model, the final loss is 1.411 𝜇𝑇. Figure 6 shows loss and 
accuracy of the model during training and validation 
processes.  

 

 
Figure 6: Loss (in 𝜇𝑇) and validation of training and validation process 

 
As it can be seen, after 20 epochs, the model is trained 

well since the loss decreased rapidly. This is due to that 
neural networks can automatically learn relevant features 
from the data. If there are complex patterns or interactions 
between different components of the magnetic field, the 
neural network can potentially discover and exploit them. 
The batch size in training process was set to 8. The dataset 
size is 324. The figures shows that the system is will fitted 
(no over or under fitting)  [12]. 

When batch size is 16 the accuracy reached 98.1 % and 
the validation loss decreased to 34.05 with 150 epochs. Then 
batch size was then decreased to 8, this value resulted in 
best accuracy of model training. It should be noted that this 
accuracy is not train accuracy, it is the validation accuracy.  

B. Structure analysis 
Many experiments have been conducted to get best 

structure, back to calibration parameters; matrix 𝐴3×3 and 
𝐵3×1, there are 12 variables, at least we need 12 equations to 
calculate them, but in the proposed method, the model not 
just is solving these 12 parameters but all linear and 
nonlinear parameters. 

Number of Layers: According to dataset size and the 
complexity of the conducted problem, 4 layers are 
sufficient; since more complex tasks or larger datasets may 
benefit from deeper architectures. 4 layers will avoid 
unnecessarily deep network, since that deep network may 
lead to overfitting or increased computational cost without 
significant performance improvement. 

Number of neurons: the number of neurons in each 
layer is chosen to be decreasing from one layer to another 
starting with (128, 64, 32). 

Batch size: according to best number of neurons and 
best number of layers, complexity of model is calculated as 
follows: 

Table 1: Model specifications 

Layer Number of parameters 
First 128 ∗ 3 + 128 = 512 
Second 64 ∗ 128 + 64 = 8256 
Third 32 ∗ 64 + 32 = 2080 
Forth  3 ∗ 32 + 3 = 99 
 
The total number of parameters are: 10947, the number of 

datapoints is in training 160 datapoint, the full complexity is 
𝑂(𝐵𝑎 ∗ 10947 ∗ 160) = 𝑂(𝐵𝑎 ∗ 1.8 ∗ 106), batch size 
should be {2, 4, 8, 16, 32, …, 2𝑟; 𝑟 is positive integer 
number} 32 or 16 will increase too much the complexity of 
calculation, 4 is small since only 4 datapoint is handled 
together, 8 is best one. The best experiment is when the 
model contains 4 layers, and (128, 64, 32) neurons and batch 
size is 8. The batch size 16 resulted in 3.2830 𝜇𝑇 loss; batch 
size 8 resulted in 1.411 𝜇𝑇 loss value 

C. Validation 
First validation on the test part dataset itself and make a 

comparison with calibrated data, Figures below show the 
results (each figure shows two axes together at the same 
time) the calibration process.  
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Figure 7: XY Magnetometer data (test part) (Raw, calibrated, our 

model) 

 
Figure 8: YZ Magnetometer data (test part) (Raw, calibrated, our 

model) 

 
Figure 9: XZ Magnetometer data (test part) (Raw, calibrated, our 

model) 
Figure 10, Figure 11, Figure 12, Figure 13 show the 

results when testing trained model on the full dataset (324 
samples) 

 
Figure 10: XY Magnetometer data (Raw, calibrated, our model’s 

output) 

 
Figure 11: YZ Magnetometer data (Raw, calibrated, our model’s 

output) 

 
Figure 12: XZ Magnetometer data (Raw, calibrated, our model’s 

output) 
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Figure 13: 3D scatter of magnetometer data (Raw, calibrated, our 

model’s output) 
Second validation: adding noise to raw data and test the 

model, the adding noise is Gaussian white noise, with noise 
factor as in Eq. 4. This is test for robustness of trained 
neural network. This is applied just on the first layer  

𝑀1(𝑛) = 𝑓𝑛 ��𝐴𝑛𝑖 ∗ (𝑀0𝑖 + 𝑁𝑜𝑖) + 𝐵𝑛

𝐿𝑗

𝑖=0

� 

𝑁𝑜 = 𝑛𝑜𝑖𝑠𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑁𝑜𝑖𝑠𝑒 

(4) 

 

 
Figure 14: Raw data and our approach output (All axis) 

Figure 15 shows the calculation of heading angle of raw 
data, true calibrated data and the proposed model,  

 

 
Figure 15: Heading angle 

Ellipsoid method was applied to adopted dataset to validate proposed method with other methods. the calibration Ellipsoid 
results were used to calculate heading and the results are shown below.  
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Figure 16: proposed method vs Ellipsoid method 

The results showed that the proposed method is efficient 
as Ellipsoid in calibration raw magnetometer data. 

V. DISCUSSION 
In general, adaptability of neural networks to different 

environmental conditions; this model can be used only with 
the magnetometer sensor that raw data was obtained from it. 
If indeed a calibration needs to be recalculated, the initial 
values for weight and biases can be got from previous 
calibration. Neural networks are capable of capturing non-
linear relationships between the measured values and 
calibrated ones. This is especially beneficial if the 
calibration process involves complex transformations, linear 
and nonlinear disturbances, the powerful of nonlinearity of 
NN can be shown in many factors: 

• Using of nonlinear activation functions, such as the 
rectified linear unit (ReLU). 

• Multiple layers allow learning hierarchical 
representations of data. Each layer has ability to 
capture different levels of data, thus leads model to 
represent complex patterns and features in the data. 

•  NN has ability to handle cases of high complexity 
data.  

If the calibrated data is available, then the calibrations 
parameters can be calculated and used, but NN have an 
advantage of more generalizations. Since in normal 
calibration, the measured data will be applied in (Eq. 1) and 
get calculated calibrated data; it can be described as static 
calculation or static calibration and if there is wrong value 
on specific axe it will affect the calibrated data directly. On 
another hand, approach of NN when it is applied, the results 
will go through many calculations (in hidden layers) these 
will extract features of input with many weights and biases 
and in case of wrong values on specific axe, this wrong 
value will be processed by many weights and many biases 
and this might resolve it (Many weights and biases not only 
one matrix and only one vector of bias).  

VI. CONCLUSION  
In conclusion, this study highlights the importance of 

magnetometer measurements in applications involving 
moving bodies. The need for accurate magnetometer data is 
evident, and this can be achieved through the using of raw 
data or by handled it by a calibration process. This article 
addresses the calibration of magnetometer data using a 
Neural Network (NN) model. The employed NN model 
follows a sequential architecture with multiple layers. NN 
model achieves a high accuracy rate of 99.38%. 
Furthermore, the trained NN model is tested on the entire 
dataset, as well as on a noisy dataset generated by adding 
noise to the raw data. The outcomes confirm the high 
efficiency of the NN model in directly calculating calibrated 
output from raw measurements. The findings of this study 
show the ability of NN to provide accurate results in the 
calibration process. 

Availability of data: the data is existed as raw data and 
true calibration parameters 

 (https://github.com/michaelwro/mag-cal-example)  
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