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Abstract — The paper presents a comparative analysis of 

iterative numerical methods of Jacobi and Gauss-Seidel for 
solving systems of linear algebraic equations (SLAEs) with 
complex and real matrices. The ranges of convergence for both 
methods for SLAEs in two and three unknowns, as well as the 
interrelationships of these ranges are obtained. An algorithm 
for determining the convergence of methods for SLAEs using 
the complex analog of the Hurwitz criterion is constructed, the 
realization of this algorithm in Python in the case of SLAEs in 
three unknowns is given. A statistical comparison of the con- 
vergence of both methods for SLAEs with a real matrices and 
the number of unknowns from two to five is carried out. 
 

Keywords — iterative methods, system of linear algebraic 
equations, Jacobi method, Gauss-Seidel method, stable 
polynomials, Hurwitz criterion.  

 
 

I. INTRODUCTION 
In the modern world, a large number of both applied and 

theoretical problems in various fields of science and 
technologies are reduced to the problem of finding exact 
solutions of various SLAEs or solutions that maximally 
approximate the exact ones, numerical methods for solving 
which have been developing over the years due to the huge 
number of areas of their application [1], [2]. 

A special place in the theory of SLAEs’ solutions is 
occupied by the simple iterative method, which is an 
alternative to direct methods of finding SLAEs’ solutions. At 
the same time, based on the simple iterative method, new 
methods for solving SLAEs are developed, which are an 
improved version of the classical method [3], [4], [5].  

Some of these, based on the simple iterative method, are 
the Jacobi and Gauss-Seidel iterative methods for solving 
SLAEs, the meaning of which is to allocate elements on, 
above and below the diagonal of the original SLAE’s matrix 
as separate matrices and conduct the simple iterative method 
using them instead of the original, which often greatly 
simplifies the calculations [6], [7]. Iterative Jacobi and 
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Gauss-Seidel methods, also being classical iterative methods 
of solving SLAEs, have recently undergone various 
improvements, some of which are described for example in 
[7], [10], [12], [13], [19], [20], [21], [22], [25]. Nevertheless, 
many modern alternatives to the classical Jacobi and 
Gauss-Seidel methods are based on sufficient condition of 
their convergence to an exact solution in the case of diagonal 
pre- dominance in the original SLAEs’ matrices, without 
considering the cases without diagonal predominance when 
these methods can also converge to an exact solution, and are 
also described only for special types of matrices [23], [24].  

The convergence of iterations to an exact solution is one of 
the main problems, since, as a consequence of the classical 
simple iterative method, the Jacobi and Gauss-Seidel 
methods not always converge to an exact solution, and have 
convergence criteria following from a similar criterion for the 
simple iterative method [6]. The search for convergence 
ranges and the theoretical comparison of the effectiveness of 
the methods based on it is the main task of this work.  

The convergence criteria obtained in [6], according to 
which the eigenvalues of the matrices in the method should 
be less than one in absolute value, are reduced to the problem 
of finding the roots of the algebraic polynomials of degree n 
with complex coefficients inside the unit circle, various 
solutions of which are described for example in [8], [9], [11], 
[17], [27], [28], [29], [30], [31], and for polynomials of a 
special kind in [16], [18].  

It can be solved by making a fractional linear 
transformation that translates the interior of the unit circle of 
the complex plane to the left half-plane and reduces it to the 
study of stability of the polynomial [11]. In [11] this problem 
is considered for polynomials with real coefficients of the 
second and third degree.  

In this paper, a comparative analysis of two methods using 
the examples of SLAEs in two and three unknowns is carried 
out by considering the ranges of their convergence, which are 
obtained under the assumption that the boundary of each 
range is formed when at least one root of the corresponding 
equation has a unit absolute value, and the rest does not 
exceed one, and all points are contained inside the range, for 
which all roots have absolute values less than one.  

There is described the general convergence criteria for 
each method in paragraph 2.  

In paragraph 3, the convergence ranges of the methods for 
SLAEs with complex coefficients in two unknowns are 
obtained, and the conclusion of their comparison is given: for 
the Jacobi method the convergence range and its boundary 
are found when substituting roots with absolute values less 
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than one into the corresponding equation, and for the 
Gauss-Seidel method by directly solving the equation.  

In paragraph 4, by a similar substitution of roots with 
absolute values not exceeding one, the boundary conditions 
of the methods for SLAEs with complex coefficients in three 
unknowns are obtained, and on their basis the convergence 
ranges in the real case are obtained, for which a comparative 
analysis is given.  

There is described a general convergence check method 
for SLAEs with complex matrices based on [11] and [14], 
and a general comparison of both methods is made in 
paragraph 5.  

In paragraph 6, a statistical comparison of convergence of 
both methods for SLAE with real matrix is carried out using 
mathematical modeling.  

II. CONVERGENCE CONDITIONS OF THE JACOBI AND 
GAUSS-SEIDEL METHODS 

When solving a system of linear algebraic equations  

 Ax b=
  (1) 

in accordance with the Jacobi method, the matrix A of the 
original SLAE is represented as a sum:  
 A L D R= + +  
 det 0A ≠  
where ,L ,D R are, respectively, the matrices with 
subdiagonal, diagonal, and overdiagonal elements of matrix 

,A and then there is a system obtained from the original 
SLAE (1): 

 1 1( )x D L R x D b− −= − + +
 

 
for which the simple iterative method converges if all roots of 
the equation 

 

11 12 1

21 22 2

1 2

0

n

n

n n nn

a a a
a a a

a a a

λ
λ

λ

=





   



 (2) 

have absolute values less than one [6]; ija - elements of the 

original matrix ,A .ija ∈  
Similarly, the Gauss-Seidel method transforms the original 

SLAE (1) to a system: 
 1 1 ( ) ( )x L D Rx L D b− −= − + + +

   
for which the simple iterative method converges to an exact 
solution if all roots of equation 
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have absolute values less than one [6], .ija ∈  

When the dimension of the original SLAE is small, we can 
find the convergence ranges of the methods by directly 
solving the equations (2) and (3). Let us show this for the 

cases of SLAEs in two and three unknowns, which often arise 
in applied research. 

III. SYSTEM OF LINEAR ALGEBRAIC EQUATIONS IN TWO 
UNKNOWNS 

A. Jacobi method 
The equation (2) has the form: 

 11 12 2
11 22 12 21

21 22

0
a a

a a a a
a a

λ
λ

λ
= − =  (4) 

and for the convergence of the method, it is necessary that its 
roots lie inside the unit circle. 

In the general case ,ija 1,2 ,λ ∈ and the system (2) is 

equivalent to equations 
 1 2

1 2 0(   )( )i ir e r eϕ ϕλ λ− − =  

 1 2 1 22
1 2 1 2  0( )i i i ir e r e r r e eϕ ϕ ϕ ϕλ λ+ − − + =  (5) 

 where 1
1 ,ir e ϕ 2

2
ir e ϕ are the roots of equation (4), 1,r 2 1.r <  

Comparing (4) and (5), we obtain the system ( 11 22 0,a a ≠

since 11,a 22a are elements of the diagonal matrix D): 

 
1 2

1 2

12 21
1 2

11 22

1 2 0i i

i i

r

e a
e r

ar r e
a a

e

ϕ ϕ

ϕ ϕ +

−

=

=





 (6) 

from which follow: 
 1 2r r=  

 2 12 21
1 2 1

11 22

1a ar r r
a a

= = <  

 12 21 11 22a a a a<  (7) 

The condition (7) defines the convergence range for the 
Jacobi method in the general case: the absolute value of the 
product of the off-diagonal elements of the matrix A of the 
system (1) must be less than the absolute value of the product 
of its diagonal elements for the method to converge in the 
case of an SLAE in two unknowns. 

B. Gauss-Seidel method 
The equation (3) has the form: 

 
11 12 2

11 22 12 21
21 22

0
a a

a a a a
a a

λ
λ λ

λ λ
= − =

 
(8)

 

and its roots 
 1 0λ =  

 12 21
2

11 22

a a
a a

λ =  

must have an absolute value less than one ( 11 22 0,a a ≠ since

11,a 22a are diagonal elements of triangular matrix L D+ ). 
Since one of them is zero, only the second root is checked 

for the convergence condition, for which, in order for its 
absolute value to be less than one, it is necessary to fulfill the 
condition 
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 12 21 11 22a a a a<
 

(9)
 

Thus, both the Jacobi method and the Gauss-Seidel 
method for SLAEs in two unknowns have the same range of 
convergence (9).

 

IV. SYSTEM OF LINEAR ALGEBRAIC EQUATIONS IN THREE 
UNKNOWNS 

A. Jacobi method 
The equation (2) has the form 

3
11 22 33 13 22 31 23 11 32 12 33 21( ) a a a a a a a a a a a aλ λ− + + +

 

 13 32 21 12 23 31   0( )a a a a a a+ + =
 

(10)
 

and for convergence of the method, it is necessary that all its 
roots lie inside the unit circle. 

Let’s divide it by 11 22 33a a a (there are no zero elements on 

the diagonal of matrix ,A since matrix D must have an 
inverse): 

 3 13 22 31 23 11 32 12 33 21

11 22 33

a a a a a a a a a
a a a

λ λ− − −
+ +  

 13 32 21 12 23 31

11 22 33

 0a a a a a a
a a a

+
+ =  

Denoting 

 
13 22 31 23 11 32 12 33 21

11 22 33

a a a a a a a a ap
a a a

− − −
=

 

 
13 32 21 12 23 31

11 22 33

,a a a a a aq
a a a

+
=

 

we obtain the canonical cubic equation: 

 
3  0p qλ λ+ + =

 
(11)

 
In the general case its coefficients and roots are complex:
,p ,q 1,2,3 .λ ∈

 
We find the convergence range of the method expressed in 

terms of ,p q ∈ by obtaining the equations of its 
boundaries and combining them. 

We obtain the equations of the boundaries under the 
assumption that there is at least one root of the equation (11) 
on boundaries, the absolute value of which is equal to one, 
and the interior points of the range are those in which the 
absolute value of each root is less than one. The boundary is 
not included in the convergence range, since at least one of 
the roots has a unit absolute value on it, which contradicts the 
convergence condition [6]. Consider several cases. 

Find the equation for the first boundary of the convergence 
range: let one of the roots of the equation (11) have a unit 
absolute value, and the other two roots have an absolute value 
not exceeding one: 

 31 2
2 3   0( )( )( )ii ie r e r e ϕϕ ϕλ λ λ− − − =  (12) 

3 31 2 1 2 13 2
2 3 2 3( ) (i ii i i i ie r e r e r e e r e eϕ ϕϕ ϕ ϕ ϕ ϕλ λ λ+ − − − + + +

 
 3 32 1 2

2 3 2 3  0)i ii i ir r e e r r e e eϕ ϕϕ ϕ ϕ+ − =  

 2 3,  1r r ≤  

Comparing (11) and (12), we obtain a system of equations 
for the first boundary of the convergence range: 

 

31 2

3 31 2 1 2

31 2

2 3

2 3 2 3

2 3

 0ii i

i ii i i i

ii i

e r e r e

r e e r e e r r e e p

r r e e e q

ϕϕ ϕ

ϕ ϕϕ ϕ ϕ ϕ

ϕϕ ϕ




−

+ + =

+ =

=

+  (13) 

from which follow: 
 1q ≤  (14) 

 1 2 3(  )arg q π ϕ ϕ ϕ= + + +  (15) 

 3 2 1
3 2

i i ir e r e eϕ ϕ ϕ= − −  (16) 
The first equation of the system (13) has a geometric 

interpretation (fig. 1) 

 
Fig. 1. Geometric interpretation of the first equation of the 

system (13). 
 
Substituting (16) into the second and third equations of the 

system (13), we have expressions: 
 1 1 1 2 2 22

2 2
i i i i i ip e e r e e r e eϕ ϕ ϕ ϕ ϕ ϕ= − − −  

 1 1 2 1 2 22
2 2

i i i i i iq r e e e r e e eϕ ϕ ϕ ϕ ϕ ϕ= +  
comparing which, we obtain the equation of the first 
boundary of the convergence range of the Jacobi method in 
the general case: 
 1 12i ip qe eϕ ϕ−= − −  (17) 
from which follow the relationships of absolute value and 
argument for p and q : 

 2
1 1  2 cos( 3 )q q qp r r ϕ ϕ= + + −  (18) 

 
1 1

1 1

sin( ) sin(2 )
arg( ) arctan( )

cos( ) cos(2 )
q q

q q

r
p

r
ϕ ϕ ϕ
ϕ ϕ ϕ

− +
=

− +
 (19) 

The relationships (18) and (19) show that the absolute 
value and argument for p depend on three parameters - the 
absolute value ,qr the argument 1,ϕ and the argument ,qϕ

the last of which depends not only on 1ϕ (15), so we will take 

the argument 1ϕ as a parameter to visualize the absolute 
value and argument for p . 

Let us take for example 1 0ϕ = and 1ϕ π= (we use these 
parameters for further visualization of the special case of 
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SLAE with real matrix when at least one of the roots of the 
equation (11) is real): at 1 0,ϕ =  according to geometrical 
considerations (fig. 1) and (15) 

 2 3 , ,  
2 2q
π πϕ ϕ ϕ π π π   = + + ∈ − − ∪      

 (20) 

 1p q= − −  (21) 

Similarly, when 1ϕ π=  

 2 3 ,
2 2q
π πϕ ϕ ϕ π π  = + + + ∈ −  

 (22) 

 1p q= −  (23) 
The picture of the absolute value (18) in this case is as 

follows (fig. 2): 

 
Fig. 2. Dependence of the absolute value |p| at the 

boundary (17) at 1 0ϕ =  (Re(q) ≤ 0) and 1ϕ π=  (Re(q) ≥ 
0). 

 
To find the second boundary of the convergence range, 

consider the case when two roots of the equation (11) on the 
complex plane have axial symmetry with respect to the line 
passing through the vector of the third root (the case when 
two roots are complex-conjugate and the third is real is a 
special case of this case), and the roots located symmetrically 
have a unit absolute value, and the third root has an absolute 
value not exceeding one. 

This case can be considered as a rotation of the system of 
vectors of roots of the equation on the complex plane from 
the zero angle by the angle 1,ϕ  which is the argument of the 
first root: taking into account that before the rotation by the 
angle 1ϕ one root was real, and the other two roots were 

complex-conjugate with arguments 2ϕ and 2ϕ−
respectively, after the rotation the picture on the complex 
plane will be as follows (fig. 3, fig. 4): 

 

Fig. 3. Location of roots of the equation (11) on the 
complex plane before rotation. 

 

 
Fig. 4. Location of roots of the equation (11) on the 

complex plane after rotation. 
 

1 2 1 2 1( ) ( )
1   0( )( )( )i i ir e e eϕ ϕ ϕ ϕ ϕλ λ λ+ − +− − − =

 
(24)

 
1 1r ≤

 
Opening the brackets and comparing (24) with equation 

(11), we obtain the system for the second boundary of the 
convergence range: 

 

2 1 2 1 1

1 1 2 1 1 2 1

1

( ) ( )
1

2 ( ) ( )
1 1

3
1

0i i i

i i i i i

i

e e re
e re e re e p

re q

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

+ − +

+ −

 + + =


+ + =
− =

 (25) 

from which follow: 
 1q ≤  (26) 

 1 2 1 2 1( ) ( )
1

i i ir e e eϕ ϕ ϕ ϕ ϕ+ − += − −  (27) 
Let’s substitute (27) into the second and third equations of 

the system (25): 
 1 2 1 1 2 )2 2 2( ) (i i ip e e eϕ ϕ ϕ ϕ ϕ+ −= − − −  (28) 

 1 1 2 1 2( (2 ) )( )i i iq e e eϕ ϕ ϕ ϕ ϕ+ −= +  

 1 1 2 1 2( ) ( )2i i iqe e eϕ ϕ ϕ ϕ ϕ− + −= +  (29) 
Comparing the square of the expression (29) and the 

expression (28), we obtain the equation of the second 
boundary of the convergence range of the Jacobi method in 
general case: 

 1 14 22 i ip q e eϕ ϕ−= − +  (30) 

 1 arg ) 3(  q ϕ π= +  (31) 
from which we find the relationships of absolute value and 
argument for p  and q  subject to the condition (31): 

 22
1 1  1p r q= − = −  (32) 

 1
2 2a (r )g   2 arg
3 3

( )p qϕ π= = −  (33) 

When 1 [ ; ],ϕ π π∈ − the picture for the absolute value 
(32) is as follows (fig. 5): 
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Fig. 5. Dependence of the absolute value |p| on q. 
 
It follows from (31), (33) that when 1 ,ϕ π= ± arguments 

 arg( ) arg( ) 0q p= =  
are in the same phase corresponding to the real case, and 
when 1 0ϕ =  

 
arg( )
arg( ) 0

q
p

π=
=

 

the arguments are in antiphase corresponding also to the real 
case ( p  is positive, q  is negative).  

In addition, for the first bound (17), it follows from (19) 
that for {0, }qϕ π∈ ±  and 1 {0, }ϕ π∈ ±  as in the case of 
the second bound:  

 { }arg( ) 0,p π∈ ±  

Hence, when at least one of the roots of the equation (11) is 
real, the cross section of the convergence range boundaries 
shown in the figures (fig. 2, fig. 5), at Im( ) 0,q =  can be 
combined into one general boundary of the convergence 
range of the Jacobi method in the real case (fig. 6) (by getting 
rid of absolute values, part of the boundaries, according to 
(21) and (23), moves to the area of negative values of p ):  

 

Fig. 6. Boundary of the convergence range of the Jacobi 
method for the real case. 

 
In particular, when 1 {0, },ϕ π∈ ±  the equation (30) takes 

the form of a parabola:  
 2 1p q= +  
Thus, the boundary of the convergence range of the Jacobi 

method in the general complex case is the union of the sets of 
points satisfying the equations (17) and (30) and the 
condition:  

 1q ≤  

In the real case, when ;ija A∈  ,p q are real numbers, 
and the roots of equation (11) are either all real or two of 
them are complex-conjugate, equations (17) and (30) form 
the following boundary of the convergence range (fig. 6):  

 2

1
1

1
1 1

p q
p q
p q

q

= − −
 = −
 = − +

− ≤ ≤

 (34)

 

The boundary, due to the above assumptions that it 
contains at least one root of the equation (11) whose absolute 
value is equal to one, does not belong to the convergence 
range. The convergence range consists of the set of points 
bounded by the boundary (34), which does not belong to this 
range, so for the convergence range, given the conditions (14) 
and (26), it follows that:  

 1 1q− < <  
Let’s show that the area in the figure (fig. 6) can be filled 

completely:  

 13 31 23 32 12 21

11 33 22 33 11 22

a a a a a ap
a a a a a a

= − − − =  

 13 32 21 22 31 12 23 31 11 32 12 21

11 22 33 21 32 11 22 33 12 31 11 22

a a a a a a a a a a a a
a a a a a a a a a a a a

= − − −  

Let’s denote:  

 22

21

ax
a

=  

 11

12

ay
a

=  

 31

32

at
a

=  

 13 32 21 12 23 31

11 22 33 11 22 33

1a a a a a a yp xt
a a a a a a t xy

= − − −  

 
Assuming that: 

 
yxt a
t

= =  (35) 

 0t ≠  

 2xy a=  

 2

1p aq
a

= − −  (36) 

,x ,y t are independent of each other, so it is always 
possible to choose the coefficients of the matrix A of the 
system (1) such that the condition (35) is satisfied and the line 
(36) is obtained. At the same time, p  and q  depend on 
three more parameters on which ,x ,y t  do not depend, so it 
is possible to choose p  and q such that they lie in the 
convergence range. Thus, we can construct any number of 
lines of the form (36), some of whose points lie inside the 
convergence range labeled in the figure (Fig. 6). The set of 
such lines completely intersects the convergence range. 
Accordingly, it is always possible to find a SLAE for which 
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p  and q  lie within the convergence range of the Jacobi 

method.  

B. Gauss-Seidel method 
The equation (3) has the form: 

 3 2
11 22 33 21 13 32 13 22 31(a a a a a a a a aλ λ+ − −  

 32 11 23 21 33 12 12 23 31 0)a a a a a a a a aλ− − + =  (37) 
and the method converges if all its roots lie inside the unit 
circle. 

One of the roots of the equation (37) is zero, and the other 
two roots are found from the quadratic equation:  

 2 0a d bλ λ+ + =  (38) 
where 
 21 13 32 13 22 31 32 11 23 21 33 12d a a a a a a a a a a a a= − − −  

 11 22 33a a a a=  

 12 23 31b a a a=  
For the Gauss-Seidel method, we find the convergence 

range, given that within it all roots of the equation (38) have 
an absolute value not exceeding one.  

In the general case 1,2, , ,a b d λ ∈ and the equation (38) 
is equivalent to equation:  

 1 2 1 22
1 2 1 2  0( )i i i ia a re r e ar r e eϕ ϕ ϕ ϕλ λ− + + =  

 1 20  ,  1r r< <  
comparing it with (38), obtain the system: 

 
1 2

1 2

1 2

1 2

i i

i i

ar e ar e d
ar r e e b

ϕ ϕ

ϕ ϕ





− =

=

−
 (39) 

which defines the convergence range of the Gauss-Seidel 
method in the general case, and from which it follows that in 
the convergence range ( 0,a ≠ since iia are the diagonal 

elements of the triangular matrix L+D, {1,2,3}i ∈ ):  

 1b
a

<  (40) 

and the boundary of the convergence range (39), assuming 
that at least one of the roots of the equation (38) has a unit 
absolute value on it (let 1 1r = ), is given by the conditions: 

 

1 1

1 2
2

20 1

i i

i i

d ae be
ar e e b

r

ϕ ϕ

ϕ ϕ

− = − −


=
 ≤ ≤

 (41) 

For 1
dd
a

=  and 1
bb
a

=  on the boundary (41), we can 

also find the relationships between absolute values and 
arguments:  

 1 1
1 1

i id e b eϕ ϕ−= − −

1 1 1 11 1 1 1 1(cos cos sin )s) ( (i )nb b b bd r i rϕ ϕ ϕ ϕ ϕ ϕ= − − − − + −
 

 
1 1 2bϕ ϕ ϕ= +  

 
1 1

2
1 1 21 2 cos( )b bd r r ϕ ϕ= + + −  (42) 

 1

1

1 2
1

1 2

sin sin
arg( ) arctan( )

cos cos
b

b

r
d

r
ϕ ϕ
ϕ ϕ

+
=

+
 (43) 

In particular, when the matrix A of the system (1) contains 
real coefficients, , , ,a b d ∈ solving directly the quadratic 
equation (38) and applying the convergence criterion of the 
Gauss-Seidel method, taking into account the condition (40), 
we obtain the convergence range of the Gauss-Seidel method 
in the case of real roots of the equation (38): 

 
1

d a b

b
a

 < +



<


 (44) 

and in the case of complex-conjugate roots of the equation 
(38): 

 0 1b
a

< <  (45) 

Note that in the latter case, the condition 
 d a b< +  

follows directly from the condition (45) and the negativity of 
the discriminant of the equation (38): 2 4 .d ab<  
Therefore, the system (44) is a single range of 
convergence of the Gauss-Seidel method in the case of 
real matrix elements of the system (1).  

The first condition of the system (44) is interpreted as a 
segment d  on an infinite line.  

Note that the conditions (44) are consistent with the 
boundary (41). 

Unlike the Jacobi method, the convergence range of the 
Gauss-Seidel method in the case of real coefficients of the 
equation (38) is not constant, and the length of the above 
segment can vary depending on the parameters a  and .b  

Let’s compare the convergence ranges of both methods in 
the case of real coefficients of the system (1). For this 
purpose, we construct the convergence range bounded by the 
boundary (34) and the range (44) on the same coordinate 
plane .qOp  The parameters p  and q  for the Jacobi 

method and , ,d a b  for the Gauss-Seidel method are related 
by the relation:  

 ( )d p q a b= + −  
substituting it into (44), we obtain:  

 

( )

1

p q a b a b

b
a

 + − < +



<


 (46) 

Expanding the absolute values in the first inequality of the 
system (46), we find that one of the boundaries of the 
convergence range of the Gauss-Seidel method is always the 
line  

 1p q= − −  (47) 
which is also one of the boundaries (34) of the convergence 
range of the Jacobi method, and the second one is also a 
straight line, which has the following form:  
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2a bp q

a
+

= − +  

It also shows that the size of the convergence range of the 
Gauss-Seidel method depends on the parameters , .a b  
Moreover, at some values of these parameters the 
convergence range of the Gauss-Seidel method can partially 
pass through the convergence range of the Jacobi method, 
and at other values it can completely contain it.  

From the second inequality of the system (46) follows: 

 
21 3a b

a
+

− < <  

so, the convergence range of the Gauss-Seidel method on the 
plane qOp  is a part of this plane, which is always bounded 
from below by the line (47), and, depending on the particular 
case, bounded from above by a line parallel to it, the 
uppermost of which is the line 
 3p q= − +  

Thus, together the convergence ranges of each method on 
the same plane qOp  are as follows (fig. 7):  

 

 

Fig. 7. Convergence ranges of methods on the plane 
.qOp  The band α  is the maximum (with upper boundary

3p q= − + ) convergence range of the Gauss-Seidel 
method; the area ABCD is the convergence range of the 

Jacobi method. 
 
According to fig. 7, the advantages of the Gauss-Seidel 

method over the Jacobi method when the system (1) has real 
matrix elements are obvious (in the case in fig. 7, the 
convergence range of the Jacobi method is entirely contained 
in the convergence range of the Gauss-Seidel method), 
especially when the parameters p  and q  have large 
absolute values - then the Jacobi method does not converge. 
Nevertheless, the upper bound of the range for the 
Gauss-Seidel method varies depending on the parameters a  
and ,b  so if the iterative process of the Jacobi method 
converges for the SLAE, it does not mean that the iterative 
process of the Gauss-Seidel method converges.  

Let’s give examples of constructing the convergence range 
of the Gauss-Seidel method in coordinates qOp to 
demonstrate how it varies depending on the parameters a  
and ,b and in the same coordinates we construct the 
convergence range of the Jacobi method for clarity.  

Example 1.  
Let the parameters 2,a = 1,b =  then the convergence 

range of the Gauss-Seidel method has the form:  

 

2( ) 1 3

1 1
2

p q

b
a

 + − <



= <


 

thus: 

 
2  2a b

a
+

=  

Then, by analogy with fig. 7, the convergence ranges for 
each method on the plane qOp  look as follows (fig. 8):  

 

Fig. 8. Convergence ranges of Jacobi and Gauss-Seidel 
methods at parameters 2a =  and 1.b =  

 
The figure 8 shows that the convergence range of the 

Jacobi method lies entirely within the convergence range of 
the Gauss-Seidel method, so in this particular case of 
parameters ,a b  for any SLAE for which the Jacobi method 
converges, the Gauss-Seidel method also converges, but the 
converse is not true.  

Example 2.  
Here is an example of a SLAE in three unknowns, for 

which the Jacobi method converges, but the Gauss-Seidel 
method does not converge:  

 

8 6 4
9 8 6

4 5 3
A

− − 
 = − 
 − 

 

In this case the parameters are as follows:  
 192a = −   
 144b =  

then the convergence range of the Gauss-Seidel method has 
the following form:  

 

192( ) 144 48

144 1
192

p q

b
a

 − + − <



= <
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2 1

2
a b

a
+

= −  

By analogy with fig. 7, we obtain the following picture of 
convergence ranges for both methods on the plane qOp  
(fig. 9):  

 

Fig. 9. Convergence ranges of Jacobi and Gauss-Seidel 
methods at parameters 192a = − and 144.b =  

 
This range does not satisfy the parameters , ,p q  which in 

this particular example for matrix A  are equal to:  

 
50

192
p = −  

 
36

192
q =  

From the figure 9 it is obvious that this point ( , )p q  does 
not belong to the convergence range of the Gauss-Seidel 
method on the plane ,qOp  but it belongs to the convergence 
range of the Jacobi method.  

In addition, in this particular case we see that the 
Gauss-Seidel method does not converge in most of the 
convergence range of the Jacobi method, but it can converge 
at large values of p  and ,q  while the Jacobi method does 
not converge at large values of  p  and .q   

V. THE GENERAL CASE OF SYSTEMS OF LINEAR ALGEBRAIC 
EQUATIONS WITH COMPLEX MATRICES 

The convergence check of each method is an investigation 
to find all roots of a polynomial of degree n  inside the unit 
circle, which can be transformed to a stability study problem 
[11]. 

In general, a polynomial of degree n with complex 
coefficients is obtained from the determinant equations (2) or 
(3): 

 1
0 1 0 ... 0,  0( ) n n

nf a a a aλ λ λ −= + + + = ≠  (48) 
For convergence of the method to which the given 

polynomial corresponds, it is necessary and sufficient that all 
its roots lie inside the unit circle, for which, in turn, it is 
necessary and sufficient that the polynomial: 

1 2 2
0 1 2( ) ( ) ( ) ( .) (  1  1 1   1 1 .() .)n n nf z a z a z z a z z− −= + + + − + + − +

 
 1  0( )n

na z+ − =  
obtained from (48) be stable [11]. 

In general, to check its stability, we can use the complex 
analog of Hurwitz’s stability criterion [14]: let there be an 

arbitrary polynomial of degree n with complex coefficients, 
the stability of which should be investigated: 

 1
0 1 ..) .( n n

nf z d z d z d−= + + +  

it’s equivalent, under the assumption that 0 0,d ≠  to the 
polynomial whose first coefficient is equal to one: 

 11

0 0

) ..( .n n nddf z z z
d d

−= + + +  (49) 

Replacing in (49) the variable z  by a purely imaginary 
number ,iω ,ω ∈ we have the polynomial: 

 
11

0 0

( ) ( ) .) .( .n n nddi i i
d d

f ω ω ω −= + + +  

which, by raising the multiplier iω  of each summand to the 
appropriate degree and separating the purely imaginary 
elements from the purely real ones, is represented as the sum 
of two polynomials with real coefficients 
 ( ) ( ) ( )  f i g ihω ω ω= +  
for which, according to [14], if the degree of the polynomial 
(49) is 2n m= : 

 ( ) 1 mg g= −  

 11) ( mh h−= −  

if 2 1n m= + : 

 ( ) 1 mg h= −  

 ( ) 1 mh g= −  
Let 
 1

0 1 ...n n
nB b x b x b−= + + +  

be an arbitrary polynomial of degree n  with real coefficients 
with positive prime factor 0b , and let 

 1 2
0 1 1...n n

nC c x c x c− −
−= + + +  

be an arbitrary polynomial of degree at most 1n −  with real 
coefficients. 

Definition. Square matrix 

 

0 1 2 3

0 1 2

0 1 2

10

10

0 1

0
0 0
0 0

00 0

0
0 0

n

n

b b b b
c c c
b b b

cc

bbb
c c −

 
 
 
 
 
 
 
 
 
 
 









  

 

 

 

of order 2n  is called the Hurwitz matrix of polynomials B 
and C, and its principal minors of even order are called the 
Hurwitz determinants of polynomials B and C. 

The complex analog of the Hurwitz stability criterion: 
polynomial of degree n  

 11

0 0

 ... 0( )  n n nddf z z z
d d

−= + + + =  

with complex coefficients and a unit (real and positive, but 
not necessarily unit) coefficient at the highest degree is stable 
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if and only if all Hurwitz determinants of polynomials g and 

h  are positive. 
In particular, when all coefficients of the resulting 

polynomial are real, we can use the classical Rouse-Hurwitz 
stability criterion for polynomials with real coefficients, or 
other similar [15] criteria to check stability. 

Thus, in general, to check the convergence of the Jacobi 
and Gauss-Seidel iterative methods, in order to avoid a direct 
search for the roots of a polynomial with complex or real 
coefficients, it is necessary to reduce it to a new one, which is 
checked for stability, which can be done using a computer by 
the above method. This method of checking convergence is 
especially relevant when the initial SLAEs have a large 
dimension, because of which we obtain equations of large 
powers, the solution of which is often very cumbersome. 

Let’s show that the range bounded by the boundary (34) is 
also obtained by applying the described method of checking 
convergence through the complex analog of the Hurwitz 
criterion for a polynomial with complex coefficients: 

 3 ( )f p qλ λ λ= + +  

 3 2 3( ) ( ) ( )   1  1 1( ) ( )1k z z p z z q z= + + + − + −  

 3 2( ) ( ) ( )  1  3 3k z p q z p q z= + + + − − +  

 ( ) ( )3 3 1p q z p q+ − + + + −  

Assuming that 1 0,p q+ + ≠  divide the last polynomial 
by this sum 

3 23 3 3 3 1 
1

( )
1 1

p q p q p qk z z z z
p q p q p q

− − − + + −
= + + +

+ + + + + +


 
3 23 3 3 3 1  

1 1 1
( ) p q p q p qk iw iw w iw

p q p q p q
− − − + + −

= − − + +
+ + + + + +

  

Let’s separate the real and imaginary parts 
23 3 3 3 1Re Im  Re

1
(

1
)

1
( )p q p q p qk iw w w

p q p q p q
− − − + + −

= − − + +
+ + + + + +



 
3 2 )3 3 3 3 1Im  Re  Im

1 1
(

1
p q p q p qi w w w
p q p q p q

− − − + + −
+ − − + +

+ + + + + +

23 3 3 3 1( ) Re Im  Re
1 1 1

p q p q p qg w w w
p q p q p q

− − − + + −
= − − +

+ + + + + +
3 23 3 3 3 1( ) Im  Re  Im

1 1 1
p q p q p qh w w w w
p q p q p q

− − − + + −
= − − + +

+ + + + + +
 

The degree of the polynomial ( )k z  is odd, so 

3 23 3 3 3 1 Im Re Im
1 1 1

( ) p q p q p qg h w w w w
p q p q p q

− − − + + −
= − = + − −

+ + + + + +


 
23 3 3 3 1 Re Im Re

1 1
)

1
( p q p q p qh g w w w

p q p q p q
− − − + + −

= − = + −
+ + + + + +



 
The Hurwitz matrix for polynomials ,g h  has the form: 

3

1 3 3 3 3 1Im Re Im
1 1 1
3 3 3 3 1Re Im Re
1 1 1

3 3 3 3 1Im Re Im
1 1 1
3 3 3 1Re Im Re
1 1 1

3 3 3 3Im Re
1 1

0

0 0

0 0 0

0 1 0

0 0

0 0 1

p q p q p q
p q p q p q
p q p q p q
p q p q p q

p q p q p q
p q p q p q
p q p q p q
p q p q p q

p q p q
p q p q

− − − + + −
− −

+ + + + + +
− − − + + −

−
+ + + + + +

− − − + + −
− −

+ + + + + +
− − − + + −

−
+ + + + + +

− − − +
−

+ + + +
1Im
1

3 3 3 3 1Re Im Re
1 1 1

0 0 0

p q
p q

p q p q p q
p q p q p q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ −
−

+ +
− − −



+ + −
−

+ + + + + +

 
When finding the convergence range in the real case, 

equating all imaginary elements in the obtained Hurwitz 
matrix to zero, we obtain the corresponding Hurwitz matrix, 
the principal minors of even order of which give the 
conditions we obtained above from the boundary (34). 

In general, to check the convergence of the Jacobi method 
for a particular SLAE in three unknowns (in our case), we can 
program the described algorithm. For example, in the Python 
language: 

 

In general, the following conclusion can be made about the 
comparison of convergence of the two methods: in the 
equation (3) for the Gauss-Seidel method, it is always 
possible to take λ  from the last line beyond the sign of the 
determinant, thus lowering the degree of the polynomial 
whose stability is to be investigated by one, which is not 
always possible for the Jacobi method according to the 
equation (2). Thus, for SLAEs in 2n >  unknowns with 
complex matrices, in general case, the polynomial, whose 
stability should be investigated, obtained for the Jacobi 
method, has degree by one more in contrast to the analogous 
polynomial for the Gauss-Seidel method. 

VI. STATISTICAL COMPARISON OF CONVERGENCE OF JACOBI 
AND GAUSS-SEIDEL METHODS  

100000 random matrices of SLAEs (1) with real matrix 
elements that are uniformly distributed random variables on 
the interval [−100; 100], with the number of unknowns from 
two to five, for each of them the well-known convergence 
criteria of each method were checked, then for each number 
of unknowns the number of cases in which both methods 
converge, only the Gauss-Seidel method converges, only the 
Jacobi method converges was determined. The obtained data 
are summarized in the table 1. 

Table 1. Convergence results of Jacobi and Gauss-Seidel 
methods 
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Number of 
unknowns 

Both 
methods 
converge 

The Gauss-Seidel 
method 

converges, but the 
Jacobi method 

does not converge 

The Jacobi method 
converges, 

but the Gauss-Seidel 
method 

does not converge 
2 49916 0 0 
3 11818 7521 1095 
4 1436 3411 528 
5 111 726 76 

 
The data obtained in the table for the number of unknowns 

2n >  confirm the conclusions that, in general, the 
Gauss-Seidel method converges much more often than the 
Jacobi method, but the convergence of one of the methods 
cannot guarantee the convergence of the other. At the same 
time, we also see that as the number of unknowns in the 
SLAEs increases, both methods converge much less 
frequently, which is consistent with the above complex 
analog of the Hurwitz criterion. 

Note also that in the case of SLAEs in two unknowns, the 
data from the table 1 confirm the conclusions that in this case 
both methods converge in the same way - if one converges, 
the other converges as well. 

VII. CONCLUSION 
The found boundary conditions in the complex case, as 

well as convergence ranges in the real case allowed us to see 
the picture of convergence conditions of Jacobi and 
Gauss-Seidel iterative methods and on this basis to make a 
comparative analysis of the effectiveness of each method: if 
in the case of square matrices of SLAEs in two unknowns 
both methods converge equally effectively, in the case of 
matrices of SLAEs in three and more unknowns methods 
have a noticeable difference in the convergence conditions - 
with increasing number of unknowns in SLAEs, the 
Gauss-Seidel method is noticeably more effective. 

For example, in the case of an SLAEs’ matrices in three 
unknowns, when the convergence ranges for both methods 
are plotted for the real case on the same coordinate plane, it 
can be seen that in the general case the Gauss-Seidel method 
has better convergence than the Jacobi method, since its 
convergence range is bounded by straight lines, but infinite in 
contrast to the convergence range of the Jacobi method, one 
of whose boundaries even enters the boundary of the 
convergence range of the Gauss-Seidel method. However, as 
it has been shown, the convergence range of the Gauss-Seidel 
method depends on the parameters that do not always give a 
full convergence range of the Jacobi method into the 
convergence range of the Gauss-Seidel method, because of 
which there may be situations when iterations converge to the 
exact solution by the Jacobi method but do not converge by 
the Gauss-Seidel method. Statistical comparison of 
convergence of both methods also confirms these 
conclusions. 

When the number of unknowns over the field of complex 
numbers is large, the convergence of each method can be 
checked using the complex analog of the Hurwitz stability 
criterion, or using the classical Rouse-Hurwitz criterion in the 
real case. 
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Аннотация — в работе дан сравнительный анализ 
итерационных численных методов Якоби и Гаусса-Зейделя 
решения систем линейных алгебраических уравнений 
(СЛАУ) с комплексными и действительными матрицами. 
Получены области сходимости для обоих методов для 
СЛАУ с двумя и тремя неизвестными, а также взаимосвязи 
данных областей. Построен алгоритм определения 
сходимости методов для СЛАУ с помощью комплексного 
аналога критерия Гурвица, дана реализация этого 
алгоритма на языке Python в случае СЛАУ с тремя 
неизвестными. Проведено статистическое сравнение 
сходимости обоих методов для СЛАУ с вещественной 
матрицей и количеством неизвестных от двух до пяти. 
 

Ключевые слова — итерационные методы, система 
линейных алгебраических уравнений, метод Якоби, метод 
Гаусса-Зейделя, устойчивые многочлены, критерий 
Гурвица. 
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