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Abstract—The research presents a method for applying a 

static mathematical model in the process of generating a 

database for training an artificial neural network. The study 

was carried out on the example of predicting the 

physicochemical properties of a model of multicomponent 

mixture of diesel fuel and hydrogen-containing gas. Data 

generation is carried out by enumeration of mutable variables 

in the range of valid values. The following process parameters 

are chosen as variables: temperature, pressure and flow rate. 

It was found that changes in the chemical composition of the 

flows do not affect the result. Diesel fuel initial boiling point 

and the boiling point of 50%, 90% and 95% of the fraction 

changes on average by 1% ÷ 4%. Deviations of the calculated 

physical and chemical characteristics as a result of 

fluctuations in the content of hydrogen bearing gas 

components do not exceed 1.1%. As a result, a neural network 

was obtained, which determines the desired values with an 

error of 0.2%. This will allow the use of a neural network in 

dynamic systems for assessing process equipment fouling. 

 

Keywords— deep learning, heat exchangers fouling, 

hydrotreating. 

I. INTRODUCTION 

Fouling of heat exchangers is one of the most common 

main faults, resulting in permanent and recurring failures 

of equipment at refinery process units. Deposits increase 

heat resistance, while the temperature of the flows is not 

maintained at the required level, which reduces the thermal 

rating of the heat exchanger, and, consequently, its 

efficiency: layers 2-4 mm thick on the inner surfaces of 

heat-releasing devices reduce the efficiency by 4-7%.  

The morphology of deposits/fouling in the form of a 

continuous layer on the surface is especially dangerous: 

thermal energy will be collected under the layer locally, 

which can lead to an increase in the corrosion rate, pitting 

of the heat exchanger and its subsequent failure with 

possible personal injury. Thus, the relevance of timely 

clarification of the causes of pollution is understandable for 

optimizing energy resources and ensuring the reliability of 

equipment, as well as for the safety of the industrial process 

[1, 2]. 
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Examples of successful methods for predicting the state 

of heat exchange equipment using ma-chine learning 

methods are described, most of which are based on 

comparing the actual (current) heat transfer coefficient in 

the equipment with the same parameter at the initial time 

[1, 3 - 5]. This approach is not always applicable in oil 

refining due to the complexity of calculating the heat 

transfer coefficient for multicomponent hydrocarbon 

mixtures with an unknown or dynamically changing 

composition. 

II. DESCRIPTION OF THE PROCESS UNDER STUDY 

One of the most large-scale refining processes at oil 

refineries (ORs) is the hydrotreatment of diesel fractions, 

designed to remove sulfur, nitrogen, and oxygen-containing 

organic compounds by their destructive hydrogenation [6]. 

The process scheme provides the heat exchangers for 

heating the feed gas mixture (FGM) at the inlet to the 

hydrotreating reactor due to the heat recovery of the product 

streams. FGM is a mixture of hydrogen rich gas (HRG) and 

diesel fuel (DF) with a dynamically changing ratio of these 

components (Fig. 1).  

The most active deposition of contaminants for feed heat 

exchangers is characteristic of the FGM (outside the tubes). 

Fig. 2 shows the opened heat exchangers of the diesel fuel 

hydrotreater after a long period of operation. 

 This nature of the formation of deposits suggests that 

it is necessary to deal with the issue of predicting the state 

of the apparatus from the side of the gas-raw mixture. A 

mathematical model in the Aspen HYSYS environment for 

a multicomponent hydrocarbon mixture makes it possible to 

calculate its physicochemical characteristics, including heat 

con-tent/enthalpy. For dynamic flows in the online 

monitoring system of the real state of the equipment, 

regular references to such a model are inconvenient, since 

the influence of the composition and temperature of the 

flows on the rate of formation of deposits on the heat 

exchange surfaces is unknown, which in turn affects the 

temperature conditions of the section of equipment. 

III. MATHEMATICAL MODELING 

The HYSYS model allows you to calculate an array of 

options with different combinations of initial information 

within a given interval, which will make it possible to train 

an artificial neural network (ANN) based on input 

parameters to predict the desired dependence on the 

obtained database (DB). 
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The specified input parameters include the instruments 

data with which the heat exchange unit is equipped (Table 

1). 

 

Fig. 1 Monitoring of hydrogen rich gas/diesel fuel flow 

rates ratio at the hydrotreating unit 

 

Table 1 – Initial data 

Flow Parameter 
Units of 

measure 
Legend 

DF 

Temperature °С ТDF 

Pressure kg/cm2 РDF 

Flow rate m
3
/h FDF 

HRG 

Temperature °С ТHRG 

Pressure kg/cm2 РHRG 

Flow rate m3/h F HRG 

Mixtur

e 

Temperature input °С TM(IN) 

Temperature output °С TM(OUT) 

 

 
Fig. 2 Deposits on the surface of heat exchanger tubes 

 

The mathematical model in the Aspen HYSYS 

environment (Fig. 3) is represented by the “Mixer” 

operator, in which two material flows (HRG + DF) are 

mixed and then pass through auxiliary heat exchangers E-

101 and E-102. The mixture is cooled to 20°C in the first 

apparatus, and heated to TM(IN) in the next one. These 

devices have no real analogues and are needed only for the 

correct operation of the model. The main calculations take 

place in exchanger E-103. The apparatus simulates the flow 

heating from TM(IN) to TM(OUT). Heat flow Q-103 is the 

energy expended on heating the flow. This is the searching 

value. 

 
Fig. 3 Mathematical HYSYS-model of the heat 

exchangers section 

In addition to process mode data, it is important to 

correctly set the chemical composition of the input streams. 

The composition of diesel fuel in production laboratories is 

estimated by fractional distillation. And for WSG, the 

component chemical composition is determined. Tables 2 

and 3 show data on changes in the composition of flows 

during the operation of the diesel fuel hydrotreater for 

2020-2021. 

For simulation of DF, averaged values were chosen, since 

they fluctuate within acceptable limits (deviation less than 

5%). But averaging the composition of the HSG can lead to 

deviations in the calculations of the physicochemical 

characteristics of the mixed flow. 

Therefore, it is necessary to determine the deviations of 

the calculated indicators of physical and chemical 

properties between the flow with the actual composition of 

the HSG and the averaged ones. Deviations were calculated 

on 100 random samples. The HYSYS model was entered 

with the actual composition of the HSG and the data of the 

technological regime at the time of sampling. And the 

curve q = f(T) was determined (green line in Fig. 4). 

Further, for the same technological regime, the “average” 

composition of the HSG was used and the dependence q = 

f(T) was also determined (orange dotted line in Fig. 4). 

The result of the deviation of the enthalpy for all 

experiments: 

- MAE = 0,7326 

- MAPE = 1,0942% 

- R2 = 0, 9968 

The low deviation makes it possible to ignore 

fluctuations in the HSG composition and use averaged 

values in modeling this flow. 

IV. DATA GENERATION AND ANN TRAINING 

To calculate the training database (DB), the Case Studies 

tool was used, in which the values of dependent variables 

(heat flow Q-103) are calculated for given independent 

variables (input parameters of the process mode). Each 

independent variable was changed by a fixed step in the 

range of working values with some margin. In total, two 

different databases were generated: for training and 

monitoring the accuracy of the NS operation (Table 4). 
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Table 2 – Change in diesel fuel composition 

Output 

Boiling point, °C 

Average for  

2020-2021 
Minimum Maximum 

Standard 

deviation  

Relative standard 

deviation 

start of boiling 180 155 196 7.14 3.97 

50% 281 216 290 6.71 2.39 

90% 333 279 344 6.00 1.80 

95% 347 330 360 3.67 1.06 

 

Table 3 – Change in HRG composition 

Component 

Mass fraction 

Average for  

2020-2021 
Minimum Maximum 

Standard 

deviation  

Relative standard 

deviation 

Hydrogen 33.24 24.52 62.33 4.17 12.55 

Methane 20.07 0.11 29.34 4.29 21.36 

Ethane 19.32 6.16 22.63 1.50 7.75 

Propane 14.72 1.63 22.73 1.68 11.42 

Butane 7.66 4.09 29.65 2.05 26.68 

∑C5 2.86 0.00 7.64 1.26 43.98 

∑C6 1.73 0.00 7.42 1.23 71.11 

 

  

Table 4 – Definition of independent variables for the training/control database 

Variables Start Finish Step Steps total 

ТDF 

РDF 

FDF 

20,0 / 22,0 

30,0 / 36,0 

30,0 / 33,0 

60,0 / 60,0 

60,0 / 60,0 

140,0 / 140,0 

10,000 / 5,7 

10,000 / 7,8 

20,00 / 17,8 

5 / 7 

3 / 4 

6 / 7 

ТHRG 

РHRG 

F HRG 

30,0 / 32,7 

20,0 / 23,4 

15,00  / 16,80 

80,0 / 80,0 

80,0 / 80,0 

100,00 / 100,00 

10,000 / 9,5 

10,000 / 9,3 

5,00 / 4,2 

6 / 6 

6 / 7 

18 / 3 

MTIN 

MTOU 

30,0 / 32,0 

60,0 / 63,0 

210,0 / 210,0 

250,0 / 240,0 

20,0 / 37 

20,0 / 37 

10 / 5 

10 / 5 

Total    5 832 000 / 3 087 000 
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Fig. 4 Examples of enthalpy deviations for four random 

 

As a result of the training database calculation, 5 

832 000 sets of the desired physical characteristics of the 

mixed flow were obtained for various combinations of 

independent variables (Table 4). This data set is divided 

into two parts: 

- training data (4 000 000 random combinations) - the 

sample required to train the ANN model; 

- test data (the remaining 1 832 000 combinations) - a 

sample intended for an intermediate assessment of the work 

of the ANN during training.  

The second set of the control database is used for the 

final assessment of the quality of the ANN after full 

training and contains the data that the ANN “did not see” 

earlier at the training stage. 

The ANN architecture is represented by elements - an 

input layer, one hidden layer of 200 neurons and output 

layer from the TensorFlow open library [7]. The input layer 

receives 8 in-put signals that go to one hidden layer, the 

response from it is thermal load heat exchanger. 

To assess the intermediate assessment of the quality of 

ANN training, the mean absolute error (MAE) is used as a 

loss function: 







SN

i S

ii

N

EL
MAE

1

 (1) 

where NS – number of samples; Li – the actual value of 

the desired value for the i-th sample; Ei – forecast ANN 

value. 

The mathematical task of training ANN is to select 

internal calculated coefficients in such a way that the loss 

function is minimal after several complete rounds of the 

training sample (training epochs). 

The results of changing the loss function after each 

epoch for training and test data sets are shown in Fig. 5. 

As can be seen from the graphs in fig. 5, the error curve 

for both output layers reaches a plateau after the 8th epoch. 

To exclude retraining of the ANN, it is necessary to stop 

the learning process at this moment. 

The assessment of the final accuracy of the ANN 

operation was carried out using a set of control data. In Fig. 

6, the calculated values lie along the Fact-Calculation 

diagonal, which indicates the reliability of the results 

obtained. This is confirmed by the calculation of statistical 

characteristics (Table 5), according to which the deviation 

of the obtained data from the actual data does not exceed 

0.5%. 

The developed and trained ANN model allows to quickly 

calculate the necessary characteristics of a complex 

multicomponent hydrocarbon mixture for online 

monitoring of a real process unit - a heat exchangers 

section of a refinery hydrotreatment unit. 

Further development of the ANN will make it possible to 

predict both the conditions under which the formation of 

contaminants on the surface of heat exchangers is possible 

in order to prevent device failures, and the establishment of 

the optimal frequency and duration of equipment re-pairs. 
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Fig. 5 Error during the training and test phases 

 
Fig. 6 Prediction accuracy of the enthalpy function versus temperature using the control data sample 

 

Table 5 – Calculating the Accuracy of an Artificial 

Neural Network Model 

Parameter Calculating formula Value 

Mean 

absolute error 
(1) 

16 

987 

Mean 

absolute 

percentage 

error 








N

i i

ii

S L

EL

N
MAPE

1

%100
1  0,44 

Root mean 

square error 

 






N

i S

ii

N

EL
RMSE

1

2

 21 

425 

Coefficient of 

determinatio

n (R2) 

 

 







2

2

2 1
ii

ii

EL

EL
R  

1,00 
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