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Abstract— Among the common methods of combating spam, 

a special place is occupied by a probabilistic machine learning 
algorithm, which is based on the well-known Bayes theorem. 
The so-called "naive" Bayesian classifier establishes the class of 
the document by determining the a posteriori maximum. With 
the development of machine learning methods, the Bayesian 
algorithm has not lost its relevance and continues to be very 
popular for solving a large number of tasks, including spam 
detection. The main advantages of this classifier are simplicity, 
fast learning, fairly high accuracy, reliability. The paper 
considers the solution of the problem of determining spam 
messages using a probabilistic machine learning algorithm. The 
mathematical justification and implementation of the Bayesian 
algorithm on a concrete example using program code in the 
Python programming language is given. 
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I. INTRODUCTION 
The use of approaches and methods implemented in 

artificial intelligence systems makes it possible to 
significantly improve the efficiency of solutions to most 
practical problems compared to traditional approaches. The 
human experience of spam detection plays an important role 
in the fight against such mailings due to the 
unconventionality and high efficiency. However, 
optimization of the filtration process and improvement of its 
mechanisms is becoming increasingly relevant. 

There are a number of spam detection methods that have 
their advantages and disadvantages in terms of meeting the 
necessary criteria of simplicity, trainability and reliability, 
minimizing false conclusions. 

In the first part of the paper, the mathematical basis of the 
probabilistic Bayesian algorithm is given. The second part is 
devoted to the implementation of an algorithm for detecting 
and filtering spam messages with a demonstration of 
program code in the Python programming language. 

II. BAYESIAN ALGORITHM AND FILTERING  
The probable Bayesian algorithm is based on the use of 

the well-known Bayes theorem [1], which is closely related 
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to conditional probabilities. This algorithm refers to machine 
learning algorithms. 

We introduce the following notation. Let X  - be a set of 
objects, Y  - is a set of classes (finite). The probability space 
X Y×  has a density of ( ) ( ) ( ),p x y P y p x y= , ( )P y  - a 

priori probabilities of the appearance of objects of each 
class, ( ) ( )yp x p x y=  - class distribution densities 

(likelihood functions). : X Yα →  - is the filtering 
algorithm. ykβ  - losses when assigning a class object to a 

class k  ( 0, 0yy ykβ β= > , y k≠ ).  

When detecting spam: 1y =  - spam, 0y =  - not spam, 

01 10β β>  (that is, the loss when passing spam is less of a 
loss than false detection). 

If we assume that the losses are determined only by the 
true classification of the object, and not by the class to which 
it was mistakenly assigned, then , ,yk y y k Yβ β≡ ∀ ∈ . 

With a priori probabilities ( )P y  and likelihood functions 

( )yp x , , ,yk y y k Yβ β≡ ∀ ∈ , 0yyβ = , the average risk is 

minimized thanks to the algorithm 
( ) ( )arg max y y yy Y
x P p xα β

∈
= . 

According to the definition of conditional probability, we 
have: ( ) ( ) ( ) ( ), y yp x y p x P P y x p x= = . The conditional 

probability ( )P y x  is the a posteriori probability of a class 

y  for an object x . To calculate it, we apply the Bayes 

formula: ( ) ( )
( )

( )
( )

, y y

k k
k Y

p x Pp x y
P y x

p x p x P
∈

= =
∑

. 

With the help of a posteriori probability , the algorithm 
will take the form: ( ) ( )arg max yy Y

x P y xα β
∈

= . 

Under the condition of equivalence of classes 1yβ ≡  we 

are talking about the maximum ( )P y x . If the classes are 

equally probable, then the object x  belongs to the class with 
the highest distribution density, ( ) ( )arg max yy Y

x p xα
∈

= . 

For example, a mail system that has been trained on a 
certain number of incoming emails (belonging to two 
classes: spam and non-spam) needs to attribute the following 
message to one of the classes considered during training. 

It is believed that the words in the letter do not depend on 
each other. The use of the so-called "naive" Bayesian 
algorithm is associated with the assumption of independence 
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and equal possibility of all the parameters under 
consideration. It should be noted that these assumptions, 
which are not entirely correct in practice, justify themselves 
in practical application. Hence the "naivety" of the 
algorithm. 

( )P y x  calculated by the Bayes formula for each class 

(by creating frequency tables for all objects (relative to the 
desired result), from which likelihood tables are created). 
The class with the highest ( )P y x  and is the desired one. 

III. ALGORITHM IMPLEMENTATION  
Here is an example of the implementation of the Bayesian 

algorithm. 
Let the system be offered the following messages as a 
training sample (see Table 1): 

Table 1 
Spam Not spam 
Laptops at a bargain price There will be a conference 

tomorrow 
Sale! Order a bike and get 
headphones as a gift 

Order skates and a bike 

 
As a spam message to be checked, we will select the 

following message: "Skates are presented on the website. 
Order one pair and a bike." 

We will perform mathematical calculations and carry out 
verification using the program code. 

To calculate the probabilities , we use the formula 
n

V N
β

β
+
+

, β  - smoothing parameter (let's put it equal to 1), 

n - the number of hits of a word in a class document, N  - 
the number of words of the class document, V  - the size of 
the training sample. 

Let's enter the data in Table 2: 
Table 2 

 Words Getting 
into the 
"Spam
" class 

Getting 
into the 
"Not 
spam" 
class 

The 
probability of 
getting into 
"Spam" 

The 
probability of 
getting into 
"Not spam" 

Th
e 

w
or

ds
 o

f t
he

 tr
ai

ni
ng

 sa
m

pl
e 

laptops 1 0   
bargain 1 0   
price 1 0   
sale 1 0   
order 1 1 (1+1)/(13+9) (1+1)/(13+6) 
bike 1 1 (1+1)/(13+9) (1+1)/(13+6) 
get 1 0   
headphones 1 0   
gift 1 0   
tomorrow 0 1   
will be 0 1   
conference 0 1   
skates 0 1 (1+0)/(13+9) (1+1)/(13+6) 

 pair 0 0 (1+0)/(13+9) (1+0)/(13+6) 
website 0 0 (1+0)/(13+9) (1+0)/(13+6) 
are 
presented 

0 0 (1+0)/(13+9) (1+0)/(13+6) 

one 0 0 (1+0)/(13+9) (1+0)/(13+6) 
 

We get the following result for the "Spam" 
class:

2 1 1 1 2 1 1 2 1 8,01809560 10
4 22 22 22 22 22 22 22 1247178944

E⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = = −

 For "Not Spam": 
2 1 1 2 2 1 1 2 16 4,47491494 9
4 19 19 19 19 19 19 19 3575486956

E⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = = − . 

We are implementing the task in the Python programming 
language. 

As a result of the program, we get weights equal to (see 
Table 3, Fig. 1): 

Table 3 
Spam Not spam 
8.01E-10 4.47E-09 
 

 
Fig. 1. The result of the program 

 
Since the weights of the "Spam" class are less than the 

weights of the "Not spam" class, we can conclude that the 
message is not spam, which is confirmed by the program. 

 
Program listing: 
 
# the library from which the list of 
punctuation marks is taken 
from string import punctuation 
# the library from which the list of 
"stop words" is taken 
from stop_words import get_stop_words 
 
spam_line = ['Laptops at a bargain price 
', 
             'Sale! Order a bike and get 
headphones as a gift'] 
# a list with "non-spam messages" 
not_spam_line = ['There will be a 
conference tomorrow', 
                 'Order skates and a 
bike'] 
 
# spam verification message 
search_spam_line = 'The site presents 
skates. Order one pair and a bike' 
 
# a function for formatting a message 
(accepts a string, returns a tuple) 
def clear_line(line_clearing: str) -> 
tuple: 
    # the whole string is converted to 
lowercase 
    line_clearing = 
line_clearing.lower() 
    # we go through the list of 
punctuation marks 
    for i in punctuation: 
        # replacing the punctuation mark 
with "emptiness" 
        line_clearing = 
line_clearing.replace(i, '') 
    # splitting the string into a list 
of words 
    list_words = line_clearing.split() 
    # let's go through the list of "stop 
words" 
    for i in get_stop_words('ru'): 
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        # if a word is found in the list 
of ready-made words 
        if i in list_words: 
            # removing a word from the 
list 
            list_words.remove(i) 
    # returning the tuple of the 
finished list 
    return tuple(list_words)   
 
# spam check function (accepts string 
and dictionary, returns boolean value) 
def check_spam(line_check: str, 
table_info: dict) -> bool: 
    # weights "spam" and "not spam" 
    result = [1, 1] 
    # the number of words from the 
training sample,  
    # the number of words included in 
"spam" and "not spam" 
    count = [0, 0, 0]   
    ### filling in count ### 
    # passage through all the "spam" 
elements 
    for i in table_info['spam']: 
        # adding the number of 
"meetings" to the total counter 
        count[0] += 
table_info['spam'][i] 
        # adding the number of 
"interruptions" to the local "spam" 
counter 
        count[1] += 
table_info['spam'][i] 
    # passing through the "not spam" 
elements" 
    for i in table_info['not_spam']: 
        # if the item is not in "spam" 
        if i not in table_info['spam']: 
            # adding the number of 
"meetings" to the total counter 
            count[0] += 
table_info['not_spam'][i] 
        # adding the number of 
"meetings" to the local "not spam" 
counter" 
        count[2] += 
table_info['not_spam'][i] 
    # passing through all the final 
words of the test string after 
formatting 
    for i in clear_line(line_check): 
        # if the word is not in "spam" 
        if i not in table_info['spam']: 
            # adding a word with a 
meaning 0 
            table_info['spam'][i] = 0 
        # if the word is not in "not 
spam" 
        if i not in 
table_info['not_spam']: 
            # adding a word with a 
meaning 0 
            table_info['not_spam'][i] = 
0 
        # smoothing parameter 
        a = 1   
        # we change the weights 
according to the formula 

        result[0] *= (a + 
table_info['spam'][i]) / (a * count[0] + 
count[1]) 
        result[1] *= (a + 
table_info['not_spam'][i]) / (a * 
count[0] + count[2]) 
    result[0] *= 
table_info['count_in_spam'] / 
(table_info['count_in_spam'] + 
table_info['count_in_not_spam']) 
    result[1] *= 
table_info['count_in_not_spam'] / 
(table_info['count_in_spam'] + 
table_info['count_in_not_spam']) 
    # debugging information about the 
balance status 
    print('Weight: spam - %s, not spam - 
%s' % (result[0], result[1])) 
    # if the weights "spam" are greater 
than the weights "not spam" 
    if result[0] > result[1]: 
        # return true (spam) 
        return True 
    # otherwise, if "not spam" is more 
"spam" 
    else: 
        # return false (not spam) 
        return False   
 
# a function for "learning" (accepts a 
list of "spam" and a list of "not spam", 
returns a dictionary) 
def learn_spam(spam: list, not_spam: 
list) -> dict: 
    # creating a "blank sheet" of the 
dictionary 
    dict_words = {'spam': {}, 
'not_spam': {}, 'count_in_spam': 0, 
'count_in_not_spam': 0} 
    # buffer lists for words 
    spam_words, not_spam_words = [], [] 
    # going through the "spam" list" 
    for i in spam: 
        # combining the formatting 
result into a single list 
        spam_words.extend(clear_line(i)) 
    # passing through the "spam" buffer 
list 
    for i in spam_words:   
        # adding to the effective 
dictionary in the dictionary "spam"  
        # the word and as a value - the 
number of repetitions 
        dict_words['spam'][i] = 
spam_words.count(i) 
    # going through the "not spam" list 
    for i in not_spam: 
        # combining the formatting 
result into a single list 
        
not_spam_words.extend(clear_line(i)) 
    # passing through the buffer list 
"not spam" 
    for i in not_spam_words:   
        # adding to the effective 
dictionary in the dictionary "not spam" 
        # the word and as a value - the 
number of repetitions 
        dict_words['not_spam'][i] = 
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not_spam_words.count(i) 
    # adding training list lengths to 
the result list 
    dict_words['count_in_spam'], 
dict_words['count_in_not_spam'] = 
len(spam), len(not_spam) 
    # returning the "trained" dictionary 
return dict_words 
 
# we call the spam check function, 
passing the checked string to it and 
# "trained" by the lists of "spam" and 
"not spam" dictionary 
if check_spam(search_spam_line, 
learn_spam(spam_line, not_spam_line)): 
    # if the function returned "true" 
    print('Spam')   
else: 
    # if the function returned "false" 
    print('Not spam')   

IV. ADVANTAGES AND DISADVANTAGES OF THE ALGORITHM  
 

The classifier in question has greater performance 
compared to other simple algorithms on a smaller amount of 
training data. 

The naive Bayesian algorithm characterizes the simplicity 
and speed of determining the class of the proposed data set. 

It is effective in working with categorical features. 
When we encounter a variable category in the test set that 

is not represented in the training set, we will encounter zero 
frequency, which will require a smoothing technique to 
solve. 

In reality, it is extremely rare to talk about the 
independence of signs. However, the point is not to consider 
independent parameters, but that we should not assume any 
dependence. This allows you to speed up the learning 
process and predict using any data sets.  
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