
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

Abstract— Among the common methods of combating spam,

a special place is occupied by a probabilistic machine learning
algorithm, which is based on the well-known Bayes theorem.
The so-called "naive" Bayesian classifier establishes the class of
the document by determining the a posteriori maximum. With
the development of machine learning methods, the Bayesian
algorithm has not lost its relevance and continues to be very
popular for solving a large number of tasks, including spam
detection. The main advantages of this classifier are simplicity,
fast learning, fairly high accuracy, reliability. The paper
considers the solution of the problem of determining spam
messages using a probabilistic machine learning algorithm. The
mathematical justification and implementation of the Bayesian
algorithm on a concrete example using program code in the
Python programming language is given.

Keywords— Spam, filtering, probabilistic algorithm, Bayes

formula, a posteriori probability, conditional probability,
machine learning, class, classifier, training.

I. INTRODUCTION
The use of approaches and methods implemented in

artificial intelligence systems makes it possible to
significantly improve the efficiency of solutions to most
practical problems compared to traditional approaches. The
human experience of spam detection plays an important role
in the fight against such mailings due to the
unconventionality and high efficiency. However,
optimization of the filtration process and improvement of its
mechanisms is becoming increasingly relevant.

There are a number of spam detection methods that have
their advantages and disadvantages in terms of meeting the
necessary criteria of simplicity, trainability and reliability,
minimizing false conclusions.

In the first part of the paper, the mathematical basis of the
probabilistic Bayesian algorithm is given. The second part is
devoted to the implementation of an algorithm for detecting
and filtering spam messages with a demonstration of
program code in the Python programming language.

II. BAYESIAN ALGORITHM AND FILTERING
The probable Bayesian algorithm is based on the use of

the well-known Bayes theorem [1], which is closely related

Manuscript received February 19, 2022.
Olga V. Okhlupina, Ph.D., Associate Professor, Bryansk State

University of Engineering and Technology, Bryansk, Russia (e-mail:
helga131081@yandex.ru)

Dmitry S. Murashko, student, Bryansk State University of Engineering
and Technology, Bryansk, Russia (e-mail: murashko100500@gmail.com)

to conditional probabilities. This algorithm refers to machine
learning algorithms.

We introduce the following notation. Let X - be a set of
objects, Y - is a set of classes (finite). The probability space
X Y× has a density of () () (),p x y P y p x y= , ()P y - a

priori probabilities of the appearance of objects of each
class, () ()yp x p x y= - class distribution densities

(likelihood functions). : X Yα → - is the filtering
algorithm. ykβ - losses when assigning a class object to a

class k (0, 0yy ykβ β= > , y k≠).

When detecting spam: 1y = - spam, 0y = - not spam,

01 10β β> (that is, the loss when passing spam is less of a
loss than false detection).

If we assume that the losses are determined only by the
true classification of the object, and not by the class to which
it was mistakenly assigned, then , ,yk y y k Yβ β≡ ∀ ∈ .

With a priori probabilities ()P y and likelihood functions

()yp x , , ,yk y y k Yβ β≡ ∀ ∈ , 0yyβ = , the average risk is

minimized thanks to the algorithm
() ()arg max y y yy Y
x P p xα β

∈
= .

According to the definition of conditional probability, we
have: () () () (), y yp x y p x P P y x p x= = . The conditional

probability ()P y x is the a posteriori probability of a class

y for an object x . To calculate it, we apply the Bayes

formula: () ()
()

()
()

, y y

k k
k Y

p x Pp x y
P y x

p x p x P
∈

= =
∑

.

With the help of a posteriori probability , the algorithm
will take the form: () ()arg max yy Y

x P y xα β
∈

= .

Under the condition of equivalence of classes 1yβ ≡ we

are talking about the maximum ()P y x . If the classes are

equally probable, then the object x belongs to the class with
the highest distribution density, () ()arg max yy Y

x p xα
∈

= .

For example, a mail system that has been trained on a
certain number of incoming emails (belonging to two
classes: spam and non-spam) needs to attribute the following
message to one of the classes considered during training.

It is believed that the words in the letter do not depend on
each other. The use of the so-called "naive" Bayesian
algorithm is associated with the assumption of independence

Applying a probabilistic algorithm to spam
filtering

Olga V. Okhlupina, Dmitry S. Murashko

17

mailto:murashko100500@gmail.com

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

and equal possibility of all the parameters under
consideration. It should be noted that these assumptions,
which are not entirely correct in practice, justify themselves
in practical application. Hence the "naivety" of the
algorithm.

()P y x calculated by the Bayes formula for each class

(by creating frequency tables for all objects (relative to the
desired result), from which likelihood tables are created).
The class with the highest ()P y x and is the desired one.

III. ALGORITHM IMPLEMENTATION
Here is an example of the implementation of the Bayesian

algorithm.
Let the system be offered the following messages as a
training sample (see Table 1):

Table 1
Spam Not spam
Laptops at a bargain price There will be a conference

tomorrow
Sale! Order a bike and get
headphones as a gift

Order skates and a bike

As a spam message to be checked, we will select the

following message: "Skates are presented on the website.
Order one pair and a bike."

We will perform mathematical calculations and carry out
verification using the program code.

To calculate the probabilities , we use the formula
n

V N
β

β
+
+

, β - smoothing parameter (let's put it equal to 1),

n - the number of hits of a word in a class document, N -
the number of words of the class document, V - the size of
the training sample.

Let's enter the data in Table 2:
Table 2

 Words Getting
into the
"Spam
" class

Getting
into the
"Not
spam"
class

The
probability of
getting into
"Spam"

The
probability of
getting into
"Not spam"

Th
e

w
or

ds
 o

f t
he

 tr
ai

ni
ng

 sa
m

pl
e

laptops 1 0
bargain 1 0
price 1 0
sale 1 0
order 1 1 (1+1)/(13+9) (1+1)/(13+6)
bike 1 1 (1+1)/(13+9) (1+1)/(13+6)
get 1 0
headphones 1 0
gift 1 0
tomorrow 0 1
will be 0 1
conference 0 1
skates 0 1 (1+0)/(13+9) (1+1)/(13+6)

 pair 0 0 (1+0)/(13+9) (1+0)/(13+6)
website 0 0 (1+0)/(13+9) (1+0)/(13+6)
are
presented

0 0 (1+0)/(13+9) (1+0)/(13+6)

one 0 0 (1+0)/(13+9) (1+0)/(13+6)

We get the following result for the "Spam"
class:

2 1 1 1 2 1 1 2 1 8,01809560 10
4 22 22 22 22 22 22 22 1247178944

E⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = = −

 For "Not Spam":
2 1 1 2 2 1 1 2 16 4,47491494 9
4 19 19 19 19 19 19 19 3575486956

E⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = = − .

We are implementing the task in the Python programming
language.

As a result of the program, we get weights equal to (see
Table 3, Fig. 1):

Table 3
Spam Not spam
8.01E-10 4.47E-09

Fig. 1. The result of the program

Since the weights of the "Spam" class are less than the

weights of the "Not spam" class, we can conclude that the
message is not spam, which is confirmed by the program.

Program listing:

the library from which the list of
punctuation marks is taken
from string import punctuation
the library from which the list of
"stop words" is taken
from stop_words import get_stop_words

spam_line = ['Laptops at a bargain price
',
 'Sale! Order a bike and get
headphones as a gift']
a list with "non-spam messages"
not_spam_line = ['There will be a
conference tomorrow',
 'Order skates and a
bike']

spam verification message
search_spam_line = 'The site presents
skates. Order one pair and a bike'

a function for formatting a message
(accepts a string, returns a tuple)
def clear_line(line_clearing: str) ->
tuple:
 # the whole string is converted to
lowercase
 line_clearing =
line_clearing.lower()
 # we go through the list of
punctuation marks
 for i in punctuation:
 # replacing the punctuation mark
with "emptiness"
 line_clearing =
line_clearing.replace(i, '')
 # splitting the string into a list
of words
 list_words = line_clearing.split()
 # let's go through the list of "stop
words"
 for i in get_stop_words('ru'):

18

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

 # if a word is found in the list
of ready-made words
 if i in list_words:
 # removing a word from the
list
 list_words.remove(i)
 # returning the tuple of the
finished list
 return tuple(list_words)

spam check function (accepts string
and dictionary, returns boolean value)
def check_spam(line_check: str,
table_info: dict) -> bool:
 # weights "spam" and "not spam"
 result = [1, 1]
 # the number of words from the
training sample,
 # the number of words included in
"spam" and "not spam"
 count = [0, 0, 0]
 ### filling in count ###
 # passage through all the "spam"
elements
 for i in table_info['spam']:
 # adding the number of
"meetings" to the total counter
 count[0] +=
table_info['spam'][i]
 # adding the number of
"interruptions" to the local "spam"
counter
 count[1] +=
table_info['spam'][i]
 # passing through the "not spam"
elements"
 for i in table_info['not_spam']:
 # if the item is not in "spam"
 if i not in table_info['spam']:
 # adding the number of
"meetings" to the total counter
 count[0] +=
table_info['not_spam'][i]
 # adding the number of
"meetings" to the local "not spam"
counter"
 count[2] +=
table_info['not_spam'][i]
 # passing through all the final
words of the test string after
formatting
 for i in clear_line(line_check):
 # if the word is not in "spam"
 if i not in table_info['spam']:
 # adding a word with a
meaning 0
 table_info['spam'][i] = 0
 # if the word is not in "not
spam"
 if i not in
table_info['not_spam']:
 # adding a word with a
meaning 0
 table_info['not_spam'][i] =
0
 # smoothing parameter
 a = 1
 # we change the weights
according to the formula

 result[0] *= (a +
table_info['spam'][i]) / (a * count[0] +
count[1])
 result[1] *= (a +
table_info['not_spam'][i]) / (a *
count[0] + count[2])
 result[0] *=
table_info['count_in_spam'] /
(table_info['count_in_spam'] +
table_info['count_in_not_spam'])
 result[1] *=
table_info['count_in_not_spam'] /
(table_info['count_in_spam'] +
table_info['count_in_not_spam'])
 # debugging information about the
balance status
 print('Weight: spam - %s, not spam -
%s' % (result[0], result[1]))
 # if the weights "spam" are greater
than the weights "not spam"
 if result[0] > result[1]:
 # return true (spam)
 return True
 # otherwise, if "not spam" is more
"spam"
 else:
 # return false (not spam)
 return False

a function for "learning" (accepts a
list of "spam" and a list of "not spam",
returns a dictionary)
def learn_spam(spam: list, not_spam:
list) -> dict:
 # creating a "blank sheet" of the
dictionary
 dict_words = {'spam': {},
'not_spam': {}, 'count_in_spam': 0,
'count_in_not_spam': 0}
 # buffer lists for words
 spam_words, not_spam_words = [], []
 # going through the "spam" list"
 for i in spam:
 # combining the formatting
result into a single list
 spam_words.extend(clear_line(i))
 # passing through the "spam" buffer
list
 for i in spam_words:
 # adding to the effective
dictionary in the dictionary "spam"
 # the word and as a value - the
number of repetitions
 dict_words['spam'][i] =
spam_words.count(i)
 # going through the "not spam" list
 for i in not_spam:
 # combining the formatting
result into a single list

not_spam_words.extend(clear_line(i))
 # passing through the buffer list
"not spam"
 for i in not_spam_words:
 # adding to the effective
dictionary in the dictionary "not spam"
 # the word and as a value - the
number of repetitions
 dict_words['not_spam'][i] =

19

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 10, no. 5, 2022

not_spam_words.count(i)
 # adding training list lengths to
the result list
 dict_words['count_in_spam'],
dict_words['count_in_not_spam'] =
len(spam), len(not_spam)
 # returning the "trained" dictionary
return dict_words

we call the spam check function,
passing the checked string to it and
"trained" by the lists of "spam" and
"not spam" dictionary
if check_spam(search_spam_line,
learn_spam(spam_line, not_spam_line)):
 # if the function returned "true"
 print('Spam')
else:
 # if the function returned "false"
 print('Not spam')

IV. ADVANTAGES AND DISADVANTAGES OF THE ALGORITHM

The classifier in question has greater performance
compared to other simple algorithms on a smaller amount of
training data.

The naive Bayesian algorithm characterizes the simplicity
and speed of determining the class of the proposed data set.

It is effective in working with categorical features.
When we encounter a variable category in the test set that

is not represented in the training set, we will encounter zero
frequency, which will require a smoothing technique to
solve.

In reality, it is extremely rare to talk about the
independence of signs. However, the point is not to consider
independent parameters, but that we should not assume any
dependence. This allows you to speed up the learning
process and predict using any data sets.

REFERENCES
[1] V. E. Gmurman, Teoriya veroyatnostej i matematicheskaya

statistika: uchebnoe posobie dlya vuzov. 11 izd. M.: Vysshaya
shkola, 2005. 479 p. (In Russian)

[2] Vysokourovnevyj yazyk programmirovaniya Python [Online].
Available: https://www.python.org/

[3] D. Barber, Bayesian reasoning and machine learning. Cambridge
University Press, 2012. 642 p.

[4] O.V. Ohlupina, A.A. Prokopenko, A.O. Zgonnikova, O yomkosti
modeli klassifikacii // Uchyonye zapiski Bryanskogo
gosudarstvennogo universiteta. Bryansk: BGU, 2021 (4). pp. 22-27.
(In Russian)

Olga V. Okhlupina, Candidate Sc. (Phys. and Math.), associate Professor,
Bryansk state engineering-technological University,
Prospekt Stanke Dimitrova, 3, Bryansk 241037, Russia.

Dmitry S. Murashko, student, Bryansk state engineering-technological
University, Prospekt Stanke Dimitrova, 3, Bryansk 241037, Russia.

20

	I. INTRODUCTION
	II. Bayesian algorithm and filtering
	III. Algorithm implementation
	IV. Advantages and disadvantages of the algorithm
	References

