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Abstract— This paper presents a solution for the tomography 

of smoothly heterogeneous highly absorbing medium using the 
amplitude trajectories method. The law of the amplitude 
trajectory curvature in asymmetric medium is determined, 
which is similar to Snell's law in geometric optics. The solutions 
obtained apply for the cases of axisymmetric and asymmetric 
medium in the approximations of the amplitude trajectory 
straightness and its slight curvature due to the medium's 
heterogeneities.  In the process of solving this problem, a new 
transform of Abel type has been discovered. 
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I. INTRODUCTION 
Since the very moment tomography arose as a science, 

there has been a strong interest in using tomographic methods 
for reconstructing the inner structure of highly absorbing 
mediums. Firstly, the reason behind it is the existing demand 
for diagnostics of various tissue diseases. Microwave 
radiation usage is especially promising for diagnostics of 
early-stage pathologies because most diseases change the 
wetness of the affected tissues in the very onset, resulting in a 
change of their permittivity and conductivity, while their 
density stays the same.  
 

Aside from technical issues of matching the emitter with 
the medium and receiving weak signals, there are problems 
with processing of gathered data and following reconstruction 
of the medium's inner structure. The major contribution into 
the field in the point observed is not made by the radiation 
scattered through heterogeneities since the absorption rate of 
the medium is high and the contrast of heterogeneities studied 
is low; actually, it is made by transmitted radiation, properties 
of which change after interacting with the medium. To 
reconstruct the medium's inner structure, it is necessary to 
analyze major effects of interaction between radiation and 
heterogeneities at each point of the medium and consider their 
integral impact on the recorded field's characteristics. Since 
radiation absorption in the medium is a dominant effect here, 
the integral attenuation of intensity is the main characteristic 
and phasic relations have a secondary role. Thus, the purpose 
of highly absorbing medium tomography is to define its 
internal structure by multangular projections of integral 
attenuation of the transmitted radiation intensity.  
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There are great achievements in solving both direct and 

inverse sounding problems for non-absorbing media. In this 
case, processes in a medium with a fairly smooth 
characteristics change depending on coordinates can be 
efficiently described using ray representation [1]. The most 
commonly known method of solving inverse problems in 
geometric optics is solving the Abel equation that sums up the 
problems of through-transmission of planar layered and 
radially heterogeneous media. 

 
If the absorption is low, it can be considered by slightly 

modifying the geometric optics equations using perturbation 
methods. In this case, the beam trajectory is determined by the 
dielectric constant's real part, and the imaginary part 
determines the integral attenuation of the radiation 
propagating along this curve [1]. Measuring the phase 
progression and attenuation of radiation caused by the 
medium provides us the ability to reconstruct its complex 
dielectric permittivity. 

 
If the absorption is high, it is possible to use the complex 

geometric optics approximation which considers how 
absorption affects the beam trajectory. However, the problem 
of physical interpretation of complex rays still remains 
unsolved. 

 
It is difficult to interpret the correlations discovered as a 

result of solving the direct problem, therefore, the precise 
solution of the inverse problem using this approach hasn't 
been found yet. Wave trajectories are considered to be 
straight lines in existing reconstruction methods. For highly 
heterogeneous media with a large linear absorption, the 
trajectory straightness can hardly be considered correct 
because even the very concept of a ray trajectory needs to be 
revised. 

 
In [2], an amplitude trajectories method was proposed to 

describe the propagation of radiation in highly absorbing 
heterogeneous media. It is based on the assumption that the 
dominant effect determining the propagation conditions of the 
wave in the medium is not interference of wave disturbances, 
but attenuation in the medium. In this case, the wave that 
passes along the trajectory with minimal attenuation 
(amplitude trajectory) will have the greatest value of the field 
amplitude at the receiving point. A significant contribution 
into the resulting field in the observation point will be made 
only by those trajectories for which the attenuation differs 
from its extreme value by no more than e  times. The higher 
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the attenuation, the tighter the area of space is compressed 
near the extreme line, within which the corresponding virtual 
trajectories are concentrated. The zone that is essential for 
propagation can be identified as the amplitude trajectory of 
the wave. 

 
The description of the wave attenuation along this curve is 

similar to the description of ray refraction in geometric optics. 
This allows us to reduce the problem of reconstructing the 
absorption coefficient profile by attenuating the transmitted 
wave intensity to the methods used for non-absorbing media 
and, particularly, to use the Abel transform and its 
generalizations for finding the solution. In [2], an estimate of 
the amplitude trajectory concept applicability was obtained: 

π>′ mnn 1 , where  n′ , n  are real and imaginary parts of the 
refractive index respectively, 53 ÷≈m  - number of first 
Fresnel zones taken into consideration. 

II. TOMOGRAPHY OF AXISYMMETRIC ABSORBING MEDIA  
Consider the case of an absorbing medium with axial 

symmetry. The intensity of the field passing through such a 
medium can be asymptotically represented as a dependence 

given by ( )( )∫−= dllnkII 00 2exp . Here 0I  denotes 

some slowly changing function, the dependence of which on 
the coordinates can be neglected, n  denotes the imaginary 
part of the complex refractive index, 0k  denotes the wave 
number. 

 
From the requirement of minimizing attenuation in a 

medium by the calculus of variations methods, one can obtain 
an equation for the amplitude trajectory in an axisymmetric 
medium, 

( ) ( ) ( ) prrnrrrn =α=α 000 sinsin , (1) 
equivalent to Snell's law for geometric optics. 
 

It is reasonable to consider the imaginary part of the 

electric length ∫= ndlL  as a measured quantity, which, 

taking into account (1), takes the form of  

( ) ( )( )
( )( )( )

∫
−

=
0

min
22

2

2
r

pr prrnr

drrrnpL , (2) 

where ( )prmin  denotes the radius of the beam turning point, 

determined from the relation ( ) prrn =minmin . As a 
parameter characterizing the distance between the enter and 
exit points of the amplitude trajectory, it is convenient to 
consider the angle (Fig. 1) 
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Fig. 1. The statement of the two-dimensional problem. 

 
Thus, when the inverse problem is being solved, the 

dependence ( )ψL  becomes the measured quantity, and the 

radial profile of the refractive index imaginary part ( )rn  acts 
as the desired function. In [2], it is shown that experimentally 
measured readings ( )ψL  in various points on the object 
surface can be associated with the impact parameter p , 

which is related to the beam entry angle 0α  according to the 
formula 

ψ= ddLp . (4) 
By reducing the dependence (2) to the Abel transform, an 
equation for finding ( )rn  [2] is obtained 

( )( )
( )( )

( )

∫ 











 −+
ψ

π
=

00 22

0

ln1ln
rrn

rrn rrn
rrnpp

d
r
r

. (5) 

 
Using this equation, the value r  can be found from the 

given value of the parameter ( )rrn , and this, ultimately, is 

equivalent to restoring the desired dependence ( )rn . It 
should be noted that the value of the refractive index 
imaginary part on the surface ( )0rn  is considered to be 
known. 

III. ATTENUATION OF INTENSITY IN AN ASYMMETRIC 
ABSORBING MEDIUM  

Let us generalize the results in the case of a medium whose 
absorption coefficient depends on two coordinates. Let us 
choose the distance r  from some fixed volume point to the 
current medium point and the angle ϕ  between a selected 
direction and the direction to the point observed as these 
coordinates (Fig. 1). 

 
To restore the two-dimensional dependence ( )ϕ,rn , 

multi-angular measurements of the attenuation are necessary. 
Such measurements can be carried out by changing the 
position of the radiation source and conducting the reception 
at all points on the surface of the investigated object at each 
position of the source. The result of such measurements will 
be a two-dimensional dependence ( )θψ,L , where ψ  
denotes the angular distance between the source and the 
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receiver, θ  denotes the angle between the direction to the 
source point and the direction of the angle ϕ  origin. 

 
From geometrical considerations, we find the relations of 

the quantities L  and ψ  to the initial angle of incidence of 

the beam 0α : 

( )
( )

( )
( ) ,

,cos
,

,cos
,0

min 2

2

1

1 dr
r

rn
r

rnL
r

r
∫ 








ϕα

ϕ
+

ϕα
ϕ

= (6) 

( ) ( )
∫

ϕα+ϕα
=ψ

0

min

21 ,tg,tgr

r

dr
r

rr
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Here 21, ϕϕ  denote the angular coordinates of space points 
on different parts of the trajectory, corresponding to the same 
value of r : min1 ϕ≤ϕ , min2 ϕ≥ϕ , where minϕ  denotes 

the angular coordinate of the turning point ( )minmin ,ϕr  for a 

particular angle. Values 1ϕ  and 2ϕ  are also determined by 
the path of the beam: 

( ) ,,tg0
1

1 ∫
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r

r

dr
r
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The relation between the angle of incidence at the current 

point in the medium and the absorption coefficient is 
determined by a relation similar to Snell's law (1), which can 
be obtained from the requirement of minimum value using 
variational methods: 

( ) ( ) ( )
( ) pdr
r

rnrrrn
r

r

=







ϕα

ϕ
ϕ∂
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+ϕαϕ ∫
0

,cos
,,sin, . (8) 

 
Thus, the system of integral equations (6)-(8) provides us a 

complete description of the amplitude trajectory along which 
the radiation propagates, making the maximum contribution 
to the field on the surface. As a result of solving this equation 
system, it is possible to obtain a direct relationship between 
the measured dependence ( )θψ,L  and the internal 
characteristics of the medium. However, the exact solution of 
the direct and inverse problems based on the obtained 
dependencies is an almost unsolvable problem. Therefore, it 
is necessary to consider various approximations. 

IV. TOMOGRAPHY OF SLIGHTLY INHOMOGENEOUS MEDIA  
Firstly, consider the solution of the inverse problem in the 

simplest case of a slightly inhomogeneous medium, in which 
( ) 0, nrn ≈ϕ , where 0n  denotes a constant value that 

resembles the known value of the imaginary part of the 
refractive index on the surface. Physically, this means that the 
ray trajectory in the medium is considered to be straight, and 
only small changes of the absorption coefficient at each point 
of the path are taken into account. These changes determine 
the differences in the attenuation measured on the surface. In 

this case, the system of equations (6) - (8) becomes 
significantly simpler. 

 
First of all, Snell's law (8) takes the form of 

min00 sinsin rrr =α=α , i.e. the current angle of 

incidence ( )rα  does not depend on the properties of the 
medium, but is determined only by the initial angle of 
incidence 0α  and the radius of the considered point r . 
Application of the obtained relation to equations (6) - (7) 
gives 

( )
( ) ( )[ ],,, 212
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π
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To restore the dependence ( )ϕ,rn , it is necessary to 

expand the measured and investigated functions in a Fourier 
series in variables θ  and jϕ ( )2,1=j  [3]: 

( ) ( ) ,, 00 ∑
∞

−∞=

θα=θα
k

ik
k eLL
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k

ik
kj
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(9) 

 (9) The expression for the Fourier coefficients has the form of 

( ) ( ) 







−
=α ∫ψ−

r
rTrn

rr
rdreL kk

r

r

ik
k

min
2

min
2
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where )arccoscos()( xkxTk =  is the Chebyshev 
polynomial of the first kind. This equation can be solved in 
various ways. In particular, using the causal solution [4], we 
obtain 

( ) ( )( )2/
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min

min
22

min

min
01 ψ−α








−π
−= ∫ ik

kk

r
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k eL

dr
d

r
rT

rr
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Similarly, it is possible to write a non-causal solution or 
obtain it using the convolution equation method [3]. 

V. TOMOGRAPHY OF A MEDIUM WITH CONSIDERATION OF 
THE RAY TRAJECTORY CURVATURE 

For solving the two-dimensional inverse problem with 
consideration of the ray trajectory curvature in the medium, 
depending on its characteristics, the most developed methods 
are based on the use of perturbation theory. In this case, the 
profile studied is presented in the form of 

( ) ( ) ( )rnrnrn  ~
0 += , where the dependence ( )rn 

0  is 

considered to be known, and the value ( )rn ~  is small 
compared to the first term. The smallness of the function 

( )rn ~  means that the ray trajectory is determined mainly by 

the influence of the profile ( )rn 
0 , and the value ( )rn ~  has 

only a perturbing effect on the received radiation 
characteristics. 

 
Let us consider the solution of the two-dimensional 
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tomographic problem in the application of the perturbation 
method to the case of axisymmetry. This means that the 
imaginary part of the refractive index is represented in the 
form of ( ) ( ) ( )ϕ+=ϕ ,~, 0 rnrnrn , where ( )rn0 denotes 
the axisymmetric component, generally unknown, 

( )ϕ,~ rn denotes the function that determines the dependence 

of the profile on the angular coordinate, ( ) ( )rnrn 0,~ <<ϕ . 
The predominant influence of the axisymmetric component in 
the profile suggests that the curvature of the trajectory will be 
determined by Snell's law (1) ( ) ( ) prrrn =αsin0 . 

 
Substituting this relation into the system of equations 

(6)-(7), we obtain 

( ) ( )
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where the turning point radius minr  is determined from the 

relation ( ) prrn =minmin0 .

 (11) 
 

 
To solve the problem, we use the expansion (9). Note that 

the zero Fourier coefficient of the function ( )ϕ,rn  

resembles the axisymmetric component ( )rn0 . Substituting 
the obtained expansions in (11), we find the following 
equation with respect to the Fourier coefficients: 

( ) ( ) ( ) ( )
( )( ) ( )( )
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When 0=k , this expression resembles the equation (2) for 
an axisymmetric medium with the replacement: L → 0L , 

n→ 0n , and therefore, to solve this equation, it is possible to 
use formulas (4), (5). 
 

To determine the components in the case of 0≠k , we 
introduce the following notations:  

( )rrnv 0= , ( ) 000 rrnb = , ( ) ( )
dv
drrnv kk =ϕ ,  

( ) ( ) ( ) 2pik
kk epLpf ψ−= , and with that, (12) takes the form 

of  
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where the function ( )v0ϕ  corresponds to the axisymmetric 

dependence ( )rn0 , which is already known, and 

( )ρρ= 0nw  . There is no exact solution to this equation, 

however, its form is similar to the Abel transform (for 0=k ) 

and to the expression (10). And this similarity determines the 
possibility of finding a solution based on a generalization of 
these integral transforms. 
 

Since the solution of equation (13) for an arbitrary form of 
the function ( )w0ϕ  is difficult, we expand this function in a 
power series in the neighborhood of the point pw = , 
restricting ourselves to three terms of the expansion 
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where 0kaak = , 1kabk = , 2kack = . 
Let us find a solution to this equation in the form of 
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To verify the validity of this assumption, let us substitute 

equation (15) into relation (14) and make sure that the identity 
is obtained. Changing the order of integration, and 
considering that ( ) 0=bfk , we come to the following 
conclusion: the identity will be satisfied if the internal integral 
is reduced to the form of 

,11arccosarchch

1archarccoscos
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with the notations of 
220

sap
pz
+

= , 
221

sap
qz
+

= , 

222 pqa −=  for any values of parameters 

kk ba , , kc , qp,  will be equal to π . Note that this statement 

was proved in [5, 6] in the case when 0=kb . According to 
the residue theory [7], this integral can be transformed into 

CJ π= , where C  denotes the value of the expression in 
square brackets for (16) at an infinitely remote point. 

 
Firstly, consider the case of ,0,0 ≠≠ kk ba  0=kc . Let 

us denote the expression in square brackets in (16) as ( )sg . 
To determine the behavior of this function in the case of 

∞→s , we use the representations of the inverse 
trigonometric and hyperbolic functions through the 
logarithmic function, obtaining 

( )sbg ks
lncos2=

∞→
. (17) 

The resulting asymptotic estimate does not depend on the 
value of the parameter ka  and for 0=kb  the constant is 

1=C . 
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For 0≠kb  and ∞→s , the cosine value is not defined. 
To find the limit value of the function g , let us differentiate 

(17) with respect to the parameter kb : 

( ) ( )( ).lnlncos1lncos2 2 ssbsb
b
g

kk
sk

−−=
∂
∂

∞→

 

 
For boundedness of the derivative in the case of ∞→s , 

it is necessary to require the vanishing of one of the factors for 
arbitrary kb . This leads to the requirement of 

( ) 1lncos =sbk  for any value of the parameter kb . Thus, 

we obtain that 1=C  for arbitrary values of ka  and kb . 
 
Similarly, it is possible to prove that 1=C  in the case 

when all three coefficients ka , kb , kc  are not equal to zero. 
Note that when ∞→s  the last terms in the arguments of the 
trigonometric and hyperbolic functions in (16) become 
dominant, therefore, the values of the parameters ka  and kb  
do not affect the behavior of the function g  at an infinitely 
distant point. Thus, it is necessary to find the limit in the case 
of ∞→s  for the function 
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To do this, we differentiate this function by the parameter kc : 
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According to the requirement of continuity of the function 
g , similarly to the case considered earlier, it is 

acknowledged that for any value of the parameter kc  the 

condition 1coscos =







=









q
sac

p
sac kk  must be 

satisfied. Consequently, the value of the constant C  for 
arbitrary values of the parameters ka , kb  and kc  equals to 

one, and the integral π=J . This fact is also confirmed by 
the results of numerical calculation of the integral (16). As a 
result, expression (15) can be used to find the functions 

( )vkϕ  for the case of 0≠k . 
 
To determine the desired function ( )rn , it is necessary to 

consider the differential equation ( ) ( )
dv
drrnv kk =ϕ . As a 

result of its solution, the expression for the spectral 
decomposition harmonics of the desired function for 0≠k  
can be given by  
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The dependence ( )rn0  used in (18) can be found on the 

basis of the equation (5) solution. The final reconstruction of 
the dependence of the medium refractive index imaginary part 
on spatial coordinates ( )ϕ,rn  is obtained by summing the 
Fourier series. 

 
Thus, the two-dimensional inverse problem solution of an 

inhomogeneous absorbing medium transmission was 
obtained in the approximation of sufficiently smoothly 
changing characteristics. As a result, the radiation 
propagation path in the medium can be effectively 
approximated by Snell's axisymmetric law. The advantage of 
this approach is that the solution is expressed in a closed form, 
thus facilitating the problem regularization, and also making it 
possible to further refine the structure of the medium using 
various iterative methods. In the process of solving the 
problem, a new Abel type integral transform was obtained. 
Researching the possibility of solving problems in this and 
other directions, combined with the further development of 
mathematical methods based on the development of the Abel 
type transformations, will provide a powerful and promising 
tool for diagnosing and restoring the internal structure of 
various structures. 

REFERENCES 
[1] S. M. Rytov, Yu. A. Kravtsov, V. I. Tatarskii, Principles of Statistical 

Radiophysics: Wave Propagation Through Random Media. 
Springer-Verlag, Berlin-Heidelberg, 1989. 

[2] V.P. Yakubov, D.V. Losev, “Reconstruction of the internal structure of 
strongly absorbing media from the data on their extinction property,” 
Atmospheric and Oceanic Optics, vol. 9, no. 10, pp. 867–870, 1996. 

[3] V.P. Yakubov, D.V. Losev, “Passive tomography of the 
two-dimensional structure of inhomogeneous media,” Atmospheric 
and Oceanic Optics, vol. 10, no. 2, pp. 110–113, 1997. 

[4] E.W. Hansen, “Theory of circular harmonic image reconstruction,” 
Journal of the Optical Society of America, vol. 71, no. 3, pp. 304–308, 
1981. 

[5] V.P. Yakubov, D.V. Losev, “The use of incoherent radiation for 
absorpting media tomography,” Journal of Radio Electronics, no. 9, 
2000.   Available: http://jre.cplire.ru/win/sep00/3/text.html (In 
Russian). 

[6] V.P. Yakubov, D.V. Losev, A.I. Mal'tsev, “Wave tomography of 
absorbing media,” Journal of Communications Technology and 
Electronics, vol. 49, no. 1, pp. 54–57, 2004. 

[7] A.G. Sveshnikov, A.N. Tikhonov, The Theory of Functions of A 
Complex Variable. Mir Publishers, Moscow, 1978. 

 

29 
 


	I. INTRODUCTION
	II. Tomography of axisymmetric absorbing media
	III. Attenuation of intensity in an asymmetric absorbing medium
	IV. Tomography of slightly inhomogeneous media
	V. Tomography of a medium with consideration of the ray trajectory curvature
	References

